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KONSTAN_IN EDUARDOVICH TSIOLKOVSKIY, A PASSIONATE
CRUSADER FOR A RELIABLE TRAN3PORT DIRIGIBLE

by

Honored Activist of Science and Engineering_RSFSR,
Dr. Techn. Sci. Professor V. A. Semenov

In the second half of the nineteenth century mankind, in its

struggle for mastery of the air, placed its greatest hopes in the
dirigible.

Dmitriy Ivanovich Mendeleyev, one of the greatest Russian men
of science of the time, was confldent of the rapid development of

heavier-than-air flying machines. Though he considered that human

understanding of these machines ("aerodynamos") was "still rudimen-

tary, on a scale incommensurate with our needs," nevertheless_ he

expressed the opinion that "this kind of aeronautics promises to

have the greatest future and to cost the least and is, so to speak,

conditioned by nature itself, since birds are heavier than air and
hence aerodynamos."* But while asserting that the future belonged

to aircraft, Mendeleyev did not recommend abandoning the possibilities

of the present; with the potentials of his time in mind s he de-
clared: "Only aerostats promise to yield quick and concrete re-

sults_ the more so as in their Case the main outlines of the whole
problem are perfectly clear from the theoretical standpoint. It is

for this reason that priority should be given to extensive practical
experiments with a properly designed aerostat.

Without being frivolous or visionary, I can state with full
assurance that a large aerostat can be just as maneuverable as a

*From a letter by D. I. Mendeleyev to the Ministry of War in 1878.

The D. I. Mendeleyev Archival Museum.
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ship."*

K. E. Tsiolkovskiy's views on controlled flight were in

complete accord with those of Mendeleyev.

Tsiolkovskiy_ in elaborating his idea of a safe dirigiblej

critically examined all the known attempts at dirigible design and

found them inadequate from the point of view of safety. He rigorous-

ly defined the essential reliability requiremmnts for the guidance

of inventors and designers and offered his own original design for

an all-metal dirigible.

Tsiolkovskiy conceived the idea that designing of an all-metal

dirigible would revolutionize human culture and economic life in his

youth. He realized, however_ that the society of his time and_

primarily the chief representatives of the scientific and technical

community_ would not be interested in his ideas unless and until he

could provide exhaustive scientific and experimental proofs of his

competence_ until he could win recognition from the scientific world.

0therwise_ he would get no help in solving the problems that interest-

ed him_ and_as a mere unknown_ would be treated with the deepest mis-

trust.

As is clear from various autobiographical notes_ Tsiolkovskiy

also realized that in his time the road was open only to wealthy

and influential people, whereas he himself was both poverty-stricken

and obscure and, moreoverj handicapped by the deafness, which de-

prived him of the opportunity of obtaining an education by the

normal practice of attending school and college. Thus, the only

path he could follow was to advance himself by his own scientific

labors_ to strive for acceptance of the idea of the all-metal

dirigible by presenting irrefutable scientific conclusions and_ in

this way, to work for recognition of the value and necessity of

translating his ideas into reality.

In the winter of 1880_ while working as a teacher in a

Borovsk school_ Tsiolkovskiy started his single-minded and com-

prehensive studies of the theory of the aerostat; it was then

that he arrived at definite and rigorously scientific conclusions

on the possibility of maneuverable aerostats and the expediency of

building giant vehicles of this kin_. While pursuing his investiga-

tions of the possibility of designing such airships, he concluded

that only metal airships were worth building.



3

rlel)BLI_ .TIHCT pyKOUHCff ¢O 203M0_KHOCTH IlOCTpOBHHH MOTaJIJII_t6CKOrO

a_pocTaTa,, noc_aBsoi H. 9. I_O_XOBCXE_ _. I4. MeH_eneemy w J890 r.

"On the possibility of constructing a metal aerostat capable

of changing in volume and even folding flat.

Borovsk_ Kaluga...Teacher at the District School .... Konstantin

Tsiolkovskiy...

(Page one of the MS of "On the Possibility of Building a

Metal Aerostat," sent by K. E. Tsiolkovskiy to D. I. Men_eleyev in

189o.)



rloc_e,aHa_ _xcT Toit _e py_conecw

"Appendix to the table

"Eq. 16 is used to calculate the maximum radius of the ring,

since the ring has one center but two perimeters and two radii. In

order to obtain the radius of the inner arc of the ring, the radius

of the outer rlngmust be subtracted.

"Konst. Ed. Tsiolkovskiy, teacher at the Borovsk District
School.

"30 August 1890. "

(Last page of the same _)

! li
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But Tsiolkovskiy did not immediately present his conclusions,

the fruit of his basic research, to the scientific institutions or to

the press.

He was not worried that someone else might appropriate his

ideas; his concern was rather that flaws in the scientific and tech-

nical presentation of his ideas might provide his adversaries with

an excuse for casting doubt on them._ And so, though not an engineer

and lacking any experience in engineering design, he decided to solve

all his problems by dint of his own research. Thanks to his great

talents and years of obstinate toil, Konstantin Eduardovich did in-

deed attain exceptional results.

Instead of merely designing an airship of no matter _hat kind,

so long as it would fly, from the very outset K° E. set himself the

most difficult task, that of designing a vehicle that would be ideal

from every point of view: safe, simple_ operationally convenient,

and economic.

It was by following this path that he arrived at the conclu-

sion that the vehicle must be made entirely of metal. He reasoned

primarily that this would safeguard his (inflammable hydrogen-

filled) airship against its greatest enemy -- fire. As for fire

itself, K. E. considered it a means of improving the operating quali-

ties of the dirigible, by heating the gas inside it. It was thus

that the brilliant idea of "uniting fire and metal" was born in the
author's brain.

In 1886 K. E. Tsiolkovskiy had already completed his first

major _ork on the theory and design of the aerostat;.it was not pub-

lished at the time, but the _ was entitled "Teoriya aerostata"

(Theory of the Aerostat).* Confident in his accomplishments in basic

research, in 1887 Tsiolkovskiy presented a report on them in Moscow

at a meeting of the Physics Section of the Society of Amateurs of

Natural Science. The report _as received with approval.

A different reaction _as provoked by this report when it _as

submitted to the Seventh Aeronautics Division of the Russian Technical

Society, which discussed it in the author's absence in October 1890.

It turned out that the Aeronautics Division lacked faith in the

future of maneuverable airships, as reflected in its decision, commu-

nicated to Tsiolkovskiy in Borovsk: "l) It is highly likely that

*The full title of the _ was: "Teoriya i opyt aerostata, imeyush-

chego v gorizontal'nom napravlenii udlinennuyu formu" (Theoretical

and Experimental Aspects of an Aerostat Elongated in the Horizontal

Direction).
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metal aerostats will be built; 2) Tsiolkovskiy may render great ser-

vices to the cause of aeronautics; 3) the construction of metal

aerostats is extremely difficult; 4) the aerostat (in the opinion

of the society) is doomed for ages_ by the very nature of things, to

remain a plaything of the wind."*

In 1891K. E. Tsiolkovskiy turned to the eminent Russian

scientist Professor A. G. Stoletov with a long letter in which he

elaborated his idea of the metal airship.

Subsequently_ Tsiolkovskiy began to publish his work in sepa-

rate articles. Since he found it difficult to publish everything at

once (about 300 pages), and thought some polishing up of his manu-

script of the "Theory of the Aerostat" still necessary, he divided it

into individual articles, revised and expanded each article and pub-

lished them consecutively over a period of years (1892-1908).

His inability to gain the material support of the official sci-

entific and technical community forced the author to appeal to a

broader stratum of society; he rewrote his mathematical work in

popular language and asked those in sympathy with him to read his

book, in the belief that this alone would suffice for his irrefutable

conclusions to win recognition.

The publication of Tsiolkovskiy's "Maneuverable Metal Aero-

stat" in 1892 was followed by a second edition of the same book in

1893 and, in the same year_ by his short article "Is a Metal Aero-

stat Feasible?" and the treatise "A 200-ManManeuverable Iron Aero-

star" and, in 1897, by the book "Independent Horizontal Motion of a

Maneuverable Aerostat"; in 1898 there appeared the book "A Simple

Account of the Airship (Popular Exposition)"; in 1905, a short

article "The Metallic Airship," and, lastly, during 1905-1908 K. E.

succeeded in having the greater part of his original work "Theory

of the Aerostat" published in the journal "Vozdukhoplavatel'" (The

Aeronaut) under the title "The Aerostat and the Airplane," after ex-

tensiverevision by the author.

Thus 22 years passed from the time K. E. first drafted his

manuscript of "Theory of the Aerostat" before most of its contents

were finally published.

The publication of Tsiolkovskiy's works met with a varied

response from the Russian and foreign press.

In 1897 "Moskovskiy vestnik" (The Moscow Herald) declared:

*As reported by Tsiolkovskiy on page VII of his book "Prostoye

ucheniye o vozdushnom korable i yego postroyenii" (A Simple Account

of the Airship and Its Construction) Kaluga, 1904.
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"No one is a prophet in his own country. Thi_ concerns a Russian

scientist from Kaluga, Tsiolkovskiy .... In 1893 this compatriot of

ours, a scientist-theoretician, published a brochure entitled 'The

Maneuverable Metal Aerostat. r Neither the general nor the special-

ized press of Russia considered it neceSsary to make the least men-

tion of this brochure, which in the meantime has been translated

into the French, German and English languages and has given birth to

a stimulating debate abroad. It was sinking into oblivion when it

was rescued by Andrge's flight. A French periodical states that had
Andr_e read this book he would never have undertaken his senseless

flight* .... So far so good, but one question remains: why did

Russian scientists consider it necessary to snub Tslolkovskiy?"

Even earlier, the journal "Razvedchik" (Explorer) declared:

"Tsiolkovskiy is a fanatical scientist obsessed by the idea of the

maneuverable metal aerostat. It appears that he has been working

on this idea for more than ten years; he has had published an en-

tire book entitled "The Aerostat" and a brochure "The Airplane," and

he has written many manuscripts. Moreover, he has conducted a whole

series of interesting experiments on the resistance of air to oblong

bodies and has constructed a model of an aerostat to prove that metal

can be used in aerostat construction .... Tsiolkovskiy's work "The

Maneuverable Iron Aerostat," clearly the fruit of solid labor, is

couched in very concrete language and deserves following up."

In 1904 Tsiolkovskiy's pr0posals were discussed in Kaluga by

a group of engineers. They concluded, among other things, that his

project was definitely feasible, highly important_ and indisputably

correct from the theoretical standpoint.

Following is the text of a press report of these conclusions:

"The author of this project_ as his numerous published works demon-

strate, has rigorously and comprehensively studied and elaborated

the entire theory of aeronautics, carried out a great deal of mathe-

matical and experimental research in this field_ weighed all the

known principles of aeronautics and, in drafting his project,

guided himself only by incontestable principles established on the

basis of the enormous material he has explored and developed. The

airship of K. E. Tsiolkovskiy is the result of persistent toil and

the zealous pursuit of an idea. It is to be hoped that these remarks

*In 1897 the Swedish engineer Andrge (born 1854), together with two

companions, Strindberg and Fraenkel, attempted to flyby balloon

from Vigo Island (Spitzbergen) to the North Pole; all three

perished without achieving their goal.
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will not pass unnoticed and that both the public and the press will

remember the existence of this project of our compatriot Tsiolkovskiy

and support its materialization."* This is followed by the signa-

tures of 14 mechanical engineers, technologists, railroad engineers,

and candidates of mathematical sciences.

In 1908 Tsiolkovskiy completed a manuscript entitled "The Heat-

ing of a Light Gas and the Resulting Change in the Lift of an Aero-

stat," which represented part of the unpublished manuscript of his

very first theoretical work, "Theory of the Aerostat" (1886). Accord-

ing to the engineer B. N. Vorob'yev, who studied the literary legacy

of K. E. Tsiolkovskiy, the contents of this manuscript represented

Chapter XVI of Part I of "The Aerostat and the Airplane," prepared

for the press and published during 1905-1908 in the journal "The

Aeronaut," in St. Petersburg, but not printed on the scale antici-

pated. This chapter was entitled by K. E. "Thermal Calculations of

the Dirigible." He wrote of it: "These calculations were made long

ago and were supposed to be published in 'The Aeronaut' as a continu-

ation of my major work 'The Aerostat and the Airplane.' But that

journal became the official organ of the Aeroclub, and so the pub-

lication of my work was discontinued. "_

Devoted to his idea of an all-metal dirigible, Tsiolkovskiy

continued his arduous work despite lack of active response from the

scientific public.

In 1910 two of his articles appeared in the press: "The Metal

Aerostat, Its Advantages and Conveniences," and "A Metal Bag of Vari-

able Volume and Shape."

Tsiolkovskiy's files were found to contain the manuscript of

his preface to one of these articles, beginning with the epigraph:

"This may be found true when I am no longer here. I shall be gone,

but logic will always remain. "

The new works of K. E. aroused further response, but once

again it was isolated and ineffective and at best provided the author

with moral support.

In 1912 the journal "Elektrlchestvo i zhizn' " (Electricity and

*The conclusions of the group of engineers in Kaluga were published

separately on page 4 (Kaluga, lO July 1904) and immediately after-

ward reprinted in various Russian newspapers and periodicals.

**B. N. Vorob'yev. "On K. E. Tsiolkovskiy's 'Heating of a Light Gas.'

Sbornik No. 6 nauchno-tekhnicheskikh rabot po vozdukhoplavaniyu

(Coll. No. 6 of Scientific and Technical Works on Aeronautics),

publ. by Aeroflot, Moscow, 1938, Pp. 1-14.
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Life) printed the following: "Tragic is the fate of this talented

and erudite inventor. His numerous discoveries have remained un-

noticed and, in the course of time some of them have been ascribed

to other inventors .... The future historian of physics will doubt-

less note the amazing persistence of our compatriot whom we, his con-

temporaries, did not appreciate .... Apparently he is too far ahead

of his time and his country."

In 1914 "Golos Moskvy" (The Voice of Moscow) declared: "An

evil fate plagues Russian inventors .... Few have heard of K. E. Tsiol-

kovskiy...whereas the names of Wright, Zeppelin, and the like, are

on everybody's lips .... Tsiolkovskiy's lot is truly to be deplored ....

Many of his theoretical conclusions seemed at one time to be so

strange as to perplex even specialists. And yet, nearly all of them

have since been proved in practice -- but alas not in Russia. Here

are a few typical examples: in 1895 Tsiolkovskiy was the first to

describe the airplane* and provide a correct mathematical descrip-

tion of all its parts. More than ten years later the airplane was

built; in the 'nineties he proved the feasibility of maneuverable

aerostats, and now dirigibles have become an accepted fact; in 1903

he published a study of the theory of motion of projectiles based

on the rocket principle. Three years later this principle was put

to military use in America and Sweden; in his studies of the resis-

tance of air Tsiolkovskiy proved a theorem that at first glance

seemed paradoxical: that the pressure of a flow normal to a plate

depends on the elongation of the plate.** This conclusion won

recognition only after Eiffel's experiments. In 1897 Tsiolkovskly

expressed new ideas on the emissive life of stars; two years later

these ideas were published by an American scientist, who retained

the honor of being the discoverer. And now, finally, Tsiolkovskiy

is working on a grandiose task -- metal aerostats .... In the brochure

which he has sent me [i.e., the author of the notice in "Golos

Moskvy" -- V. S.] he touchingly appeals for the confidence of the

public: "The leitmotif of my life has been to accomplish something

of benefit to mankind, to live a useful life. That is why I was

interested in doing something that brought me no personal gain; but

I hope that my work will provide socletywith abundant material

*The author of this newspaper report apparently was unaware of the

research done by A. F. Mozhayskiy during 1880-1885 -- V. S.

**This discovery by K. E. is described in Volume 1 of his Collected

Works, Academy of Sciences DSSR Press, 1951, pp. 6 and 7 [V. S.]
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wealth and magnified powers."*
The above quotations demonstrate that manyhad recognized the

scientific validity of Tsiolkovskiy's conclusions and the indisputable
advantages of his airships to the national economy, should they be
built. But dozens of years passed without any one in Russia or abroad
undertaking to realize Tsiolkovskiy's proposals.

II. The Originalityof Tsiolkovskiy's scientific and

Technical Ideas. A Glimpse Into the Future.

With his project for an all-metal dirigible K. E. Tsiolkovskiy

proved to be ahead not only of all his fellow inventors but also of
his time.

His period of activity followed more than lOO years after the

first aerostat in the history of mankind had been invented and flown,

and yet mankind still lacked maneuverable aerial vehicles. Previous-

ly only diffident attempts had been made at constructing tiny dirigi-

bles, barely able to make an ascent even without a load. The reli-

ability and transporting powers of these dirigibles were simply not

worth mentioning.

The maximum speed of the best dirigible of those times did

not exceed 20 k_hr, and the craft was powerless against gusty winds.

Many were skeptical of further progress and made rash statements such

as: "the aerostat will always remain a plaything of the winds."

Tsiolkovskiy had to contend with this atmosphere of disbelief

in the future of aeronautics when he first made public his radical
ideas.

In his view, the wind problem could be solved by following an

easier_ though longer_ route; moreover, K. E. was confident in the

inevitability of an increase in engine power, in technical progress.

The most fundamental problem awaiting solution at the time was, in

his opinion, that of insuring a longer flight time, but this could

not be accomplished with dirigibles with fabric envelopes, which

*All the excerpts cited here are from notices published in the preface

to K. E. Tsiolkovskiy's brochure "A Table of Corrugated-Metal

Dirigibles," Kaluga, 1915 -- V. S.
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leaked gas and lost lift and therefore could not remain aloft long.
Moreover, Tsiolkovskiy regarded the fabric envelope as insufficiently
strong and a fire hazard; since it was not airtight, air could pene-
trate and, once inside, mix with the hydrogen_ i.e., form an in-
flammable mixture which a randomspark could transform into fiery
death for the ship and its passengers.

Amongthe other disadvantages of fabricenvelopes Tsiolkovskiy
mentioned the piloting problems due to the variability of the diri-
gible's lift and the inability of the pilot to control the static
equilibrium of the vehicle by suitably altering the gas temperature
in the balloon: heating the gas inside a fabric envelope struck
Tsiolkovskiy as a serious fire hazard to the entire dirigible.
Lastly, the fabric envelope limited the size of the dirigible and
hence the possibilities of a marked increase in its load capacity.

In view of these considerations_ Tsiolkovskiy began to advo-
cate the idea of huge dirigibles with an all-metal envelope.

Since a metal envelope is not inflammable and the gas inside
it cannot escape, K. E. thought it possible to heat the hydrogen
artificially in flight without incurring any fire risk; by this
meanshe hoped to provide the dirigible with constant and perfect
vertical maneuverability.

In order to enable the gas to expand freely during the ascent
of the vehicle or in the event of excessive heating, and in order to
prevent a fall in pressure (as comparedwith the pressure of the
outside air) during the descent of the vehicle or on cooling of the
gas inside the envelope, the dirigible envelope should, in Tsiol-
kovskiy's opinion, be capable of changing volume, i.e., shrinking
and expanding.

From the standpoint of design, Tsiolkovskiy's proposal reduces
to concentrating all the weight of the vehicle in the envelope, which
would thus serve as both gas container and structural skeleton.

This consideration convinced Tsiolkovskiy that the larger the
volume of such a dirigible the greater its advantages.

Despite all the persuasiveness of his arguments, however, they
were not utilized in actual dirigible construction.

The low level of teChnology at the time, the difficulty of

making gastight seams in balloon envelopes, and the complexity of

the actual construction of a metal envelope of variable volume --

all this forced the builders of small _irigibles to employ soft

fabric balloons and a rigid framing system in building large ones.

Thus, Tsiolkovskiy's ideas found no immediate support either

in Russia or abroad.

His ideas were dozens of years ahead of the science and tech-

nology of his time.

The subsequent development of the technology of dirigible

construction shows that Tsiolkovskiy's ideas were adopted by other



L_

authors who, however, treated them as recent discoveries, without
mentioning the nameof Konstantin Eduardovich.

Thus, while the end of the nineteenth century was mainly

characterized by the development of ideas and designs for different

dirigible systems and little actual cor_struction, the beginning of

the twentieth century was marked by the successive development of

several types of dirigible.

Regarding the dirigible as a means of transport, during 1886-

1892 Tsiolkovskiy showed why small dirigibles are unsuitable for

this purpose and proposed a design for a giant dirigible. The bold-

ness of his concept frightened his contemporaries.

In practice, during the period from 1890 to 1910 emphasis was

placed on the development of small dirigibles mainly -- with the ex-

ception of the German zeppelins -- of the nonrigid type. Experience

has shown that these dirigibles are unsuitable for transport purposes.

As Tsiolkovskiy had foreseen, fabric dirigibles of the non-

rigid type proved to have a 10w load-carrying capacity and a high

dead load factor, as well as an extremely limited provision for

fuel supplies, a short radius of action, and a very low ceiling.

AI1 this restricted their usefulness to the performance of

special services only. As a rule, their volume did not exceed 5000

to 8000 m3_ whereas for transport purposes large-volume dirigibles

were needed.

The dirigibles most popular around 1925 were of the so-called

semirigid type (with a fabric envelope combined with a rigid metal

keel extending longitudinally along the bottom of the ship from nose

to stern) with flying and steering qualities greatly superior to those

of the nonrigid ships; the volume of the semirigid ships reached as

much as lO,O00 to 20,000 ? but even they were still unsuitable for

organized passenger service. The problem of the safety of long-

range flights in these dirigibles could not be satisfactorily solved.

As Tsiolkovskiy had foreseen, the needs of an aerial transport fleet

could only be satisfied with much larger ships.

As far back as 1892 K. E. had pointed out the need to design

a 200-man transport dirigible, i.e._ a giant airship, and he commenced

his investigations with the problem of insuring its operational

safety. Tsiolkovskiy's idea that a true transport dirigible is

possible only if its volume is enormous (hundreds of thousands of

cubic meters) found its embodiment abroad where about 1930 gigantic

dirigibles with a volume of lO0,O00 to 2j000,OOO m3 began to be built.

But the foreign designers followed a reasoning different from that

of Tslolkovskiy. The giant ships R-101 in Great Britain, Akron and

Macon in the United States, and Hindenburg in Germany, the design of
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which was based on the German dirigibles (zeppelins), did not meet

Tsiolkovskiy's principal safety requirements. Life itself cruelly

showed how right Tsiolkovskiy was: all four crashed and many lives
were lost.

For forty years (1895-1935) theforeign proponents of trans-

port dirigibles argued in f_vor of the superiority of the zeppelin

system. It is characteristic of the prickly and costly path of de-

velopment of dirigible construction that firms were commissioned

merely to improve on a predetermined design; the blind reluctance_

or rather failure to apprehend the advantages of investing capital

in other, more progressive ideas of dirigible cor_truction, ultimately

led to the bankruptcy of the entire idea of transport dirigibles, in

Germany_ in the United States and in Great Britain.

The colossal expenditure of effort and resources on dirigible

construction during these forty years is eloquent proof of the

enormousness of the aerial transport needs of the countries named.

The disasters encountered by lthe giant dirigibles owing to design de-

fects and errors in operation led to the halting of the construction

of further airships.

It is significant to note that the abandonment of airships in

the United States_ Great Britain and elsewhere was motivated by the

failure to solve the problems of the construction of transport

dirigibles rather than by any sudden disappearance of the need for

this means of transport.

The colossal capital investments in dirigible construction in

the United States_ Great Britain, and Germany, which continued until

the final aerial catastrophes (until 1937), indicate that though the

need for transport dirigibles vas enormou_ a reliable_ safe and

operationally simple dirigible just could not be developed. The

foreign designers paid a cruel price for their errors_ which con-

firmed the validity of Tsiolkovskiy's scientific and technical ideas,

based on the unconditional requirement of operational safety.

Of course_ no_ 3 in the mid-twentieth century_ when we consider

Tsiolkovskiy's work on all-metal dirigibles_ we should examine it not

in the light of the technology of 1886-1892, when K. E. formulated

his first technical concepts, but in the light of our present possi-

bilities as defined by the latest achievements of science and en-

gineering.

Although the basic idea remained the same, the last zeppelins

to be built (1930-1935) differed from the original zeppelins (1900)

in method of design and in certain structural details.

K. E. always tested his theoretical concepts with the aid of

mathematical analysis and experiments on models. As part of his

metal envelope projectj K. E. made a mathematical analysis of the

stress distribution in the envelope as the shape of its cross section

changed. In checking his design of a metal envelope of variable
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volume, K. E. verified his computations on models. By means of exact

geometrical calculation he succeeded in making the models vary in

volume smoothly and flexibly, from a flat box to a solid of revolution

and back again.

In the last years of K. E. 's lifelwork on models of envelopes
for his airship was carried on by a special design office and reflected

the technological level of the thirties.

K. E. 's death led to a cessation of work on his dirigible at a

stage at which not only was the craft still incomplete but not even a

working design of the ship as a whole had been prepared.

In our day science and technology are developing at a head-

long pace, and an interval of 20 to 30 years may thus represent a

major period in history. Therefore, the future builders of trans-

port dirigibles will probably examine largely from the historical

standpoint the individual design solutions once proposed by K. E.

Tsiolkovskiy, while focusing their search for valuable hints and

suggestions on his scientific and technical theories on the safety

of dirigibles -- theories that cannot grow obsolete.

There is not a grain of doubt that had Tsiolkovskiy's tech-

nical concepts been actually applied to dirigible construction in the

last 60 years, all the structural components of his dirigible_ and the

ship as a whole, would have passed through many stages of improvement

and, as indicated by experience in the development of the zeppelins_

in its present-day form, had it existed, it would not only have borne

very little resemblance to the 1890 version but would have greatly

surpassed the accomplishments of 1935 with respect to the envelope

design.

Thus, while a designer may pass lightly over those of Tsiol-

kovskiy's technical solutions that by now are mainly of historical

interest, he will find the substance of K. E. 's work to contain much

that is of value and proof positive of the supremacy of the author's

scientific and technical Ideas_ where our present accomplishments in

dirigible construction are concerned.

Ill. The Triumph of Tsiolkovskiy's Ideas

The potential of giant dirigibles as high-capacity freight

carriers capable of nonstop trips lasting several days over any

route on earth and across any ocean has impelled nearly every major

nation to attempt to develop such airships.
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This has not proved to be an easy matter. The countries which

suffered resounding failures in the use of dirigibles -- failures

that involved disasters with_ as a rule_ great loss of human life --

appear to have lost nearly all hope of surmounting the design, pro-

duction and, particularly, operational difficulties that came to

light.

Among these unsuccessful countries are France, Great Britain,

Italy, and the United States; they all (except the United States)

abandoned further development of dirigibles_ especially giant diri-

gibles. Germany, which also suffered tremendous losses (in 1937 the

crash of the world's biggest airship, the Hindenburg), instead of

drawing pessimistic conclusions announced an expansion of its program

of dirigible construction.

The foreign press has more than once asserted that airships,

capable of floating in the air for days on end, are greatly needed

in peacetime as well as in war, but first there is a need for in-

novations in the technology of dirigible construction with the aim

of improving the airworthiness of these ships and eliminating the
chances of fatal accidents.

The authors of these comments maintained that the dirigible

cannot compete with the airplane: its role begins where that of the

airplane ends.

Everyone remembers the measures taken by the Germans during

1930-1935 to use giant zeppelins to establish major air links be-

tween Europe and South and North America. At that time, Germany

succeeded in building a global network of dirigible bases with hangars

and mooring masts. In South America these bases used the facilities

of the extensive local German-organized airline network, while in

the Atlantic floating bases on board specially equipped sea-going

ships were introduced.

Dirigibles could also perform another and no less important

civilizing function. The solution of the principal problems of the

design, production and operation of huge transport dirigibles, and

the development of a dirigible design of maximum operational simpli-

city and reliability, assuring maximum flight safety, would provide

a basis for organizing a complex dirigible service to all the road-

less and remote regions of the world. Under certain conditions this

could considerably speed up the rate of cultural and economic de-

velopment of these regions.

All these problems of the broad employment of dirigibles would

have been generally recognized, and airships would have won public

acceptance, if instances of breakdowns and disasters could have been

reduced to a minimum.

This is confirmed by the fact that until 1935 the United States,

Great Britain and other countries pursued extensive programs of

dirigible construction, involving millions in investments. A major
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reason for dropping these programs was doubt in the possibilities

of successful operation of airships of the conventional rigid type,

which do not always insure sufficient lift and constitute a fire

hazard, especially when the gas employed is hydrogen. But this, of

course, did not in itself reduce the demand for transportation Of
this kind.

World public opinion began to propose as the major requirements

for dirigibles the conditions that had been formulated 40 years earli-

er by Tsiolkovskiy in nearly the same words (except that he did not

mention helium) • namely:*

a) eliminate fire hazards by replacing inflammable hydrogen

by a completely incombustible gas -- helium;

b) improve the quality of the materials used in dirigible con-

struction, use lightweight yet strong materials;

c) improve the design so as to make it less vulnerable to ex-

treme operating conditions;

d) increase the load capacity while at the same time insuring

freedom to select a route depending onthe weather conditions;

e) prolong the safe operating period of the dirigible;

f) simplify operation and make dirigibles capable of parking

aloft, tethered to mooring masts;

g) reduce to a minimum the operating expenses; mainly gas

leakages 3 which is particularly important on conversion from hydrogen

to helium;

h) investigate the operating conditions in all their aspects_

so as to assure the complete safety of regular flights.

These severe requirements caused the leading designers to

adopt a critical attitude toward the seemingly inviolable principles

of designing giant airships based on the Zeppelin system. The de-

*See, e.g.; Carl B. Fritchie; "The All-Metal Airship" in The Journal

of the Royal Aeronautical Society, 1931. Russian translation pub-

lished by 0NTI in 1934.
T

11iim
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signers began to realize that material was not being efficiently

utilized: the frame of the airship was the only structural element;

the remaining material (for example, gas ballonets and outer covering,
which account for a large part of the dirigible's dead weight) did not

add to the structural strength 3 the frame being left to carry the
burden alone.

In endeavoring to eliminate this shortcoming and have all the

elements of the airship participate in insuring its structural

strength, the designers began to consider the advantages of building

giant dirigibles with an all-metal hull.

The metal envelope fulfills the dual purpose of lending struc-
tural strength of the dirigible and serving as a gas container. This

solution of the problem eliminates accessories such as the outer

covering and the lifting gas ballonets, and it causes the entire en-
velope of the dirigible to react to the influence of gravity forces

and aerodynamic loads.

On the whole, for a large dirigible this solution reduces the

dead weight of the ship.

The successful design solution of this complex technical

problem opened the way for the eventual construction of large-volume

dirigibles with a much greater load capacity than the zeppelins and a

longer range, higher operating ceilingj and a greater capability for

nonstop flights.
The same problem could not be solved with small dirigibles and

became very real once the advantages of using giant airships were
recognized and airships with a volume of hundreds of thousands of
cubic meters were built.

Thus, the advances in scientific understanding led back to
the theories offered as early as the end of the last century by

Tsiolkovskiy: it was recognized that only large airships could be

advantageously used for transport purposes and that these airships
should be all-metal (cf. Tsiolkovskiy's "200-Man Maneuverable Iron

Aerostat").

Forty years of experimenting were needed to produce concepts

that had already been expressed by K. E. Tsiolkovskiy, while aero-
nautics was still in the cradle.

As American designers have admitted, the advantages of dirigi-

bles with a metal envelope consist in the following, as previously
stated by Tsiolkovskiy:

*See, e.g._ articles by the various engineers who participated in

building the MC-2 dirigible, as edited by C. Fritchie in the journal
"Aeronautical Engineering," 1951. A Hussian translation by Zakharov

was published under the title "Vozdushnoye sudno s metallicheskoy

obolochkoy" (An Airship With a Metal Envelope), 0NTI, Gosmashmetizdat,

1934.
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I. A metal envelope can be made absolutely gastight; if filled

with hydrogen, it will be free of the diffusion (usually observed in

dirigibles with a fabric envelope) which may lead to the formation of

a detonating mixture near the envelope; if, on the other hand, the

ship is filled with a nonflammable gas like helium_ the metal en-

velope will protect the gas against contamination and leakage, which
is extremely important considering the high cost of helium.

2. The metal envelope of the dirigible makes it less suscep-

tible to accidental damage and therefore more operational.

3. Such a dirigible will perform much better (compared with

conventional dirigibles) when tethered to masts; moreover, it is not

vulnerable to the weather and does not require servicing in hangars

and shops during stop-overs en route.

4. Such a dirigible should be extremely economical and have

a long life.

5. Such a dirigible should be safe for passengers, since

weather conditions do not affect it, and it should be safer for over-

seas flights than existing models.

Anyone who has ever read Tsiolkovskiy's works carefully will

readily recall that he makes exactly the same suggestions.

Science and Technology were very late in grasping Tsiolkovskiy's

concepts -- and by the time they grasped them_ their author was for-

gotten and his name was not mentioned.

Work on metal-envelope dirigibles was begun in the USSR and

United States, but for various reasons it had to be abandoned before

the construction of the first models of large metal dirigibles could

be completed.

As noted previously, K. E. Tsiolkovskiy claimed that the

future belonged to ships that were both huge and made entirely of

metal.

Tsiolkovskiywrote that fabric airships could also be made

completely maneuverable_ but only metal airships could be safe.

Considering the complete impermeability of the metal envelope,

K. E. suggested that the envelope itself should be directly filled

with gas.

Tsiolkovskiy, as we know, did not confine himself merely to

proposing a metal envelope. He worked out a theory of a "breathing"

metal envelope_ i.e., one capable of changes in volume depending on

the behavior of the gas it contained; in addition_ in order to insure

the stable static equilibrium of the ship in flight without the aid

of ballast, K. E. suggested heating the gas in the envelope and de-
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veloped the theory of this problem.

Tsiolkovskiy's dirigible, if successfully tested, would have

meant low-cost and simple dirigible production.

Despite all the attractiveness of the design and its indispu-

table operational advantages, the actual construction of a ship with

a variable-volume envelope proved to be extremely difficult, even for

the most advanced technology of the late twenties and early thirties.

The designers of metal dirigibles, both in the D_SR and United

States, started with a minimal program of improvements in dirigible

building, this being simpler for the designers; thus, a variable-

envelope dirigible was not contemplated.

Eventually, a metal-envelope dirigible, the MC-2, with a

volume of 5600 3 was built in the United States.

Since the deadweight of this small ship was so great (4150

kg) as to reduce its load capacity to almost zero, it must be re-

garded merely as a flying model of the future huge all-metal dirigible.

American designers did not attempt to apply the principle of

Tsiolkovskiy's "breathing" envelope, but confined themselves to the

scheme of a thin metal envelope reinforced bY a lightweight metal

framework of stringers and ribs. The envelope together with the

framework represented a single structural unit, as in Tsiolkovskiy's

dirigible.

The fixed shape of the American dirigibles and the mainten-

ance of the required excess gas pressure inSide the envelope were ac-

complished with the aid of ballonets in the form of fabric bags placed

inside the metal envelope. In this case_ the danger of an accidental

mixing of the lifting gas _ith air inside the ship is eliminated by

using the inert gas helium instead of the inflammable hydrogen.

Trials with this dirigible confirmed the assumption that

metal-envelope dirigibles have considerable advantages.

The data on the operation of this dirigible were used as the

basis for calculating the design of another_ enlarged model (200_000 m3

volume).
The calculations confirmed both a saving in weight as compared

with a zeppelin of the same volume_ and a gain in speed. A decisive

advantage of the metal-envelope dirigible_ according to these calcula-

tions_ was that the metal envelope can withstand a sharp rise in ex-

cess gas pressure; in fact, within certain limits_ the overall

structural strength of the ship even increases somewhat instead of

decreasing. Therefore, the ship's captain can always increase the

overa_ safety factor during forced and hazardous maneuvers by raising

the excess gas pressure.

The design principle of this envelope makes full allowance for

aerodynamic requirements and reduces drag to a minimum. Calculations
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of large-volume dirigibles have shownthat K. E.'s theories on the
possibility of constructing a gastight metal envelope are definitely
feasible, and that the maximumadvantages of such an envelope can be

obtained only for ships with a volume of lO0,O00 m3 and upward; in
fact, the larger the volume the greater the advantages.*

This last conclusion merely echoes what Tsiolkovsk±y had as-
severated in the nineties and laid downin a numberof his works.

A group of Soviet dirigible builders, engineers who ascertained
through their own calculations that technical progress in dirigible
building would depend on the development of a new type of metal-en-
velope dirigible, produced a complete design for a ship of this kind,

with a volume of 8000 m3, and carried out a numberof related experi-
ments.

This dirigible was also intended to be a large airworthy model
of the future all-metal flying giants. But in this case, too, the
only ideas of Tsiolkovskiy's to be utilized were his scientifically
based concepts of the metal envelope as a load-bearing structure. As
for the overall structural design of the new dirigible, it remained
quite simple.

The envelope of this dirigible consisted of sheets of stain-
less steel O.1 mmthick. The principal technological process used in
constructing it and making the joints was electric welding, as recom-
mendedby Tsiolkovskiy. Comparedwith the riveting employed by the
Americans, electric welding is more reliable, since the seamsare
stronger and more gastight, and the work goes considerably faster.

The problem of constructing the world's first stainless-steel
dirigible was solved by the young and talented Soviet engineers com-
pletely on their own, using newmaterials and a new technological
process. The ship's hull consisted of a lightweight frame to which
the envelope waswelded. Thus the entire hull was a load-bearing
structure. The envelope, which lacked interior ballonets, served
also as the gas Container. No attempt was madeto construct a vari-
able-volume envelope and so, in order to insure a constant internal
excess pressure in the envelope, two fabric air-ballonets were intro-
duced; the air in them was delivered by a propeller. The successful
progress of the work to develop this first Soviet metal-envelope

*This refers to the calculations of the designers of the dirigible
ZMC-2, given in their articles in the journal "Aeronautical Engineer-
ing," 1931 (see footnote on p. /19).
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dirigible confirmed all the original concepts and calculations of its

designers.

All that had been done thus far in the USSR and United States

was to solve a mere fraction of the complex of technical problems

broached in Tsiolkovskly's works. Not even a rudimentary attempt was

made to translate into_ reality Tsiolkovskiy's calculations of the

"breathing" envelope; that was still beyond the grasp of the dirigible

engineers.

The ballonetless dirigible was doubtless a major stride for-

ward in dirigible construction. K. E. Tsiolkovskiy, thanks to his

rigorous calculations, provided a solution of this problem. As

science and technology develop_ other solutions may also arise.

Once the construction of transport dirigibles is resumed on a

large scale, the final design of the all-metal ships will, of course s

be adapted to the latest achievements of engineering science and

based on analyses of the worldwide experience gained in the building

and operation of dirigibles. By now s however, it may be confidently

stated that as for the feasibility and economic expediency of build-

ing metal-envelope dirigibles, the principles first formulated by

Tsiolkovskiy have completely passed the test.

It is absolutely certain that the future belongs to the

dirigible that has a completely gastight envelope s is the least sus-

ceptible to weather conditions, the simplest to repair, easy to

operate, optimal in design with respect to weight and, therefore,

with a maximum load capacity and optimal flying and operating quali-

ties. This ideal airship of the near future is a ballonetless

dirigible with an all-metal hull and a varlable-volume gas container,

exactly as maintained by Tsiolkovskiy in all his works on dirigible

construction.

Following their work with metal dirigibles in 1929-1930 the

American dirigible builders advanced the concept that the best solution

was a large dirigible with a metal envelope.*

As far back as 1890 Tsiolkovskiy had foreseen this trend and s

in his calculations for _ variable-volume metal envelope, he had al-

ready expressed this idea of the American designers. He had whole-

heartedly striven to ensure the primacy of his compatriots in dirigible

development.

The fundamental premises for judging the further prospects of

dirigible building must be:

*For sources see footnotes on pp. l_/__!_,u_2 _.
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l) a conviction that a given country must have dirigibles;

2) the technical feasibility of meeting the new high require-
ments for reliable dirigible operation.

The first premise exists. This was proved by the tremendous
capital investments in dirigible construction madefor manyyears in
the United States, Great Britain, and Germany,by the efforts to
refine dirigible design in building the R-100 and R-lOl in Great
Britain, the Akron and Maconin the United States, and the LZ-127 and
LZ-129 in Germany,by the huge amount of related scientific research_
and, lastly_ by the construction of dirigible bases around the world.

For it cannot be doubted that, had not the last four giant
dirigibles met with disaster,* had they accomplished the tasks for
which they were designed, we nowwould have a vast network of dirigible
lines linking the 01d World with the Newand the capitals of many
countries with their former colonies; then, of course, the construc-
tion of dirigibles would not have been discontinued owing to their
apparent superfluity or their apparently low level of technical
qualities and airworthiness (ceiling_ speed_cruising range, load
capacity_ etc.).

The cessation of dirigible construction does not in itself
invalidate the first of these premises. In reality, the principal
cause of this cessation was doubt in the structural reliability of
large dirigibles, inability to find a workable technical solution that
would protect the passengers against so-called flight accidents, and
a lack of confidence in the interested countries in their own ability
to cope with the rising difficulties of operating large-volume air-
ships.

It is unquestionable that the problem of the further construc-
tion of transport dirigibles hinges on the solution of the technical
problem of their safety.

Nowthe safety of dirigibles, in its turn, hinges on the need
to improve the design of large dirigibles and the techniques of
operating dirigibles, and also on the need to replace the inflammable

*Here we refer to: the British dirigible R-lO_____!l, volume 148,000 m3

(crashed in 1930); the American Akron and Macon, volume 184,000 m3
each (crashed in 1933 and 1935); and the GermanHindenburg, volume

20,000 .m3 (crashed in 1937).
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gas hydrogen by the inert gas helium as the lifting gas of the diri-

gible.

Scientific and technical concepts have advanced to a stage at

which the obsolete large zeppelin-type dirigibles have been abandoned

and the solution of the problem of the all-metal hull has begun to be

explored along the path pointed out by Tsiolkovskiy. Here it is

pertinent to quote K. E. Tsiolkovskiy concerning the way out of the

impasse_reached by dirigible construction: "Complete maneuverability

can also be obtained with organic aerostats, but only metal airships

assure safety and broad practical applications."*

IV. Recognition of the Works of K. E. Tsiolkovskiy.

Their Historical, Scientific and Practical Value.

By the time of the Great October Socialist Revolution Tsiol_

kovskiy had reached the age of 60.

After the Revolution a tremendous change took place in K. E.'s

life. Under Soviet rule he became surrounded with esteem and unflag-

ging attention. His works received complete recognition.

The entire history of dirigible construction and a penetrating

analysis of every improvement made in the dirigibles actually built

led K. E. to conclude that there was no need to modify any of his con-

cepts of the all-metal dirigible, and furthe< convinced him of the

validity of the conclusions and suggestions that he had offered

since 1890.

The works of Tsiolkovskiy that date from the Soviet period

repeat the principal assumption of his theory of the metal aerostat,

provide counsel on the practical organization of experimental work,

survey critically the existing types of dirigibles_ and point out the

errors in the research into metal-envel0pe dirigibles in the USSR and

abroad.

In the final years of Tsiolkovskiy's life an engineering group

was set up at the "Dirizhablestroy" Trust with the object of design-

ing a ship along the lines he proposed. In 1933 this group was renamed

*K. E. Tsiolkovskiy. "Prostoye ucheniye o vozdushnom korable_" Kaluga_

1904, p. 103.
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the Bureau for Building the Tsiolkovskiy Dirigible, and provided with

an experimental shop.

The first two steel models of the envelope, with volumes of 1

and 13 m 3, yielded a great deal of information for elaborating the

technological process and continuing the project.

In 1933 the Bureau designed an experimental flying model with

a volume of 3000 m_, based on an outline sketched by Tsiolkovskiy a

year previously. The research program provided for experimental in-

vestigations of different methods of joining steel sheets, the me-

chanical properties of corrugations, the strength of the joints be-

tween individual components, the behavior of complete envelope under

variable loads, etc.

In addition, K. E. drafted a program that envisaged the con-

struction of a number of models of progressively increasing size,

with gradual refinement of the individual structural components.

Taking into account the desiderata stated by K. E. (see above),

the Bureau designed in 1934, and built in 1935, a model_ith a

volume of lO00 3 that was the prototype of the envelope of the

future Tsiolkovskiy all-metal dirigible.

During the construction and testing of this model the Soviet

engineers verified the justice of K. E.'s principal postulates on

such advantages of the all-metal ship as total gastightness, simpli-

city of design and construction, which reduced the entire process of

envelope production and assembly to work with plane surfaces, the

possibility of utilizing the engine exhaust gases to heat the lifting

gas with the object of adjusting the lifting force of the dirigible

in flight, etc.

The successes in working with this large model enabled the

Bureau to develop broad research to the deeper aspects of the Tsiol-

kovskiy theory of dirigibles, to elaborate the design of individual

elements and components of the dirigible, to master the technological

process of production and assembly, to reorganize the production base,

and to improve the training program.

The first period of Tsiolkovskiy's creativity (1886-1892),

though characterized by an abundance of ideas and theories of funda-

mental value, which have not lost their relevance up to the present

day, and some of which have even become most topical, could not, of

course, be commensurate with the level of technical progress then

prevailing, which was much lower than it is now.

Readers of Tsiolkovskiy's original works who are already

familiar with the theory of the problem from the specialized litera-

ture of today and the writings of K. E. in the final period of his

life will be interested to trace the progress in the ideas of this
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self-educated scientist from elementary information about aerodynamics

and certain other disciplines to problems of the theory of elasticity

that still present considerable difficulty to the science of our own

day.

A bold combination of advanced ideas in the field of physics

and thermodynamics with strict requirements for the engineering in-

dustry enabled the author, as early as 1892, to propose an airship

design that would be best and safest.

As raised by Tsiolkovskiy, such problems as heating the gas

in the airship, utilization of the elastic properties of metal, and

the like, are problems the complete solution of which still requires

a great deal of work on the part of the scientists and engineers of

the present and perhaps future generations.

Tsiolkovskiy's creativity in the field of the all-metal

dirigible is of special value precisely now that the advocates of

the old method of dirigible construction can see no way out of the

difficulties they have encountered.

For so long as comparatively small dirigibles satisfied prac-

tical needs, Tsiolkovskiy's ideas were regarded as unnecessary. But

now that previously adopted dirigible designs no longer satisfy the

increased demands and high operating requirements, the only solution

is to undertake studies of large dirigibles of the type that has not

yet been realized.

Successful technical mastery of the principles of the Tsiol-

kovskiy dirigible would basically resolve all the difficulties that

have recently been hampering the construction of transport dirigibles:

l) the all-metal envelope provides a container of maximum

strength;

2) the variable volume of the envelope, which depends on the

behavior of the gas inside the ship, dispenses with the complicating

feature of air ballonets and assures the purity of the gas;

3) the heating of gas in the ship facilitates changes in

altitude;

4) the optimal weight ratio of such a ship could raise the

dirigible ceiling to 10,OOO m.

The actual designing and subsequent construction of dirigibles

require an extensive study of a series of new scientific and tech-

nical problems in the light of present-day science and engineering.

The problem of the lifting gas must be radically resolved;

inflammable hydrogen must be replaced by helium.
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Much work also remains to be done with respect to coordinating

the creative activity of the designer with the needs of practical

operation.

Even in his first work on aeronautics Tsiolkovskiy clearly

foresaw the technology of the future and the future needs for aerial

transport. He pointed out the path of development of dirigible con-

struction for many years ahead. His work is now a shining beacon in

science, attracting the attention of the scientists and designers

called upon to provide mankind with a reliable transport dirigible.
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T. THEORY OF THE AEROSTAT*

i. CONDITIONS FOR THE EQUILIBRIUM, ASCENT,

AND DESCENT OF THE AEROSTAT

Basic formulas

i. The forces acting on an aerostat can be divided under two

principal headings. The first group of forces are those acting in

the direction opposed to gravity, and accordingly lifting or striv-

ing to lift the aerostat. The magnitude of this lifting force is

determined, on the basis of Archimedes' law, by the formula

0 = W U,
b a

where the letters denote respectively: the Archimedean buoyant force,

the density of the air, and the volume of the aerostatQ

*Writings of 1886; 1905 to 1908.

The asterisk (*) will be used to indicate editor's remarks found

at the back of the book, or footnoted in the text.
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2. The action of the other forces is aligned with the

direction of gravity, and consists of the weight Q of the aero-
st.

stat structure and the weight Q of the light gas carried in the

g

aerostat balloon. The weight of the passengers, fuel, and any other

cargo will be designated simply as Q . The sinking force Q will
L si.

thus be expressed by the equation

0si = Q + 7g " U + Q
st. L

3. The relationship between the sinking force and the

buoyant force on the aerostat determines the ascent, descent, and

equilibrium of the aerostat. The equilibrium condition is ex-

pressed by the formula

Q = Q = 7a U = Qs + 7 U+ Q
b si t. g L

or by

-7 )=Q +Q.
a g st. L

4. If this equation is not satisfied, the aerostat will
neither rise nor descend. In that case the resultant R will be
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equal to the following

R--Q -Q =(7 "7 )4-, -Q.
b si a g st. L

and will comprise the difference between the forces acting to buoy

up or pull down the aerostat. When the resultant is positive, the

aerostat will rise, and when it is negative the aerostat will de-

scend, while, when the result is zero, the aerostat will be in

equilibrium.

Effect of Temperature and Pressure

on Terms in the Above Formulas

5. The quantities appearing in our above equations are

generally variables. Thus, the density of the air, the density of

the gas, and the volume of the aerostat will depend on the tempera-

ture inside and outside the aerostat envelope, as well as on the

pressure inside and outside the envelope, and these variables de-

pend in turn on the climatic, meteorological, and other influences

(for example, on the altitude of the aerostat above sea level).

g. We know from physics that the variations in the terms

U, 7 , and T are expressed by the following functions of the ab-

a g

solute temperature T and the pressure p:

. Pa TO
7. 7 =7

a a

0 PO Ta
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8_

7 = _g
g

0

Pa TO

PO T
g

9. U=U
0

• PO . Tg

Pg TO

since the density of any gas W is proportional to the pressure p
g g

exerted on it and is inversely proportional to the absolute tempera-

ture T of the gas, while the dependence of the volume U of the gas
g

on these variables is reciprocal.

I0. In these formulas, p denotes the pressure of the gas
0

or air on a unit area at normal temperature (O°C) and normal pres-

sure (760 mm Hg); U is the volume of the entire gas under those
0

condition,s; T is the absolute temperature zero, i.e., 273°K.
0

ii. In general the absolute temperature is

T = t + 273,

where t is the centigrade temperature.

However, in these last formulas, _e may infer any pressures,

temperatures_ volumes, and densities whatever, provided these quan-

tities, e.g., T , U _ FO , and P0 are properly interrelated, i.e.,
0 0
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the volume U must refer to the temperature T , density 7 , and
0 0 0

pressure p .
0

12. Now, from equation (4), on excluding the variables with
the aid of equations (7), (8), and (9), we find

o¢¢¢>R=U Ta - -Q
0 st.

13. Clearly, from this equation, the resultant R will not

change in magnitude when the temperatures remain the same but the

pressures vary while remaining mutually equal, as will occur when

there is no obstacle to a change in the volume of the aerostat or

when its envelope is free to change in volume. The resultant will

not change either when the ratio Pa/Pg remains constant, i.e.,

when the external pressure is a certain number of times greater or

smaller than the internal pressure, even though one or the other

may vary without limit. This will be the case whenever the volume

of the aerostat or of the gas filling it is artificially varied and

the pressure of the internal gas is thereby altered as well. Such

a case is seemingly of no practical importance.

14. The resultant will likewise suffer no change in response

to a change in the temperature, provided the temperatures inside and

outside the aerostat are equal; this situation will prevail both

day and night in overcase weather with the aerostat remaining at

a fixed altitude above sea level. The resultant will not change

either when the temperatures inside and outside are different, but
the ratio of the absolute temperatures T /T remains unchanged. This

g a

case may apply to any aerostat o

15. Finally, the resultant will remain unchanged even when

the pressures and temperatures are different but the ratios

P/Pga and T/Ta_ are constant, or when the ratio of the products
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pT/pT
ag ga

infer

is constant. Note that, from formulas (7) and (8), wemay

16.

7__a _ " _ paTg) .

7g p T7g 0 g a

Accordingly, in place of this last condition of constancy of

the resultant we may adopt another: a constant R requires that the

remain unchanged.ratio between the air and gas densities T Tg

The Walls of the Aerostat May Be Freely

Compressed and Expanded

P
a

P
g

17. In an aerostat such as described, the external pressure

of the atmosphere may be assumed equal to the internal pressure

of the gas; formula (12) will then take on the form:

0 - Qst - QL"
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18. Clearly then, the resultant R will retain its value when

the ratio of the absolute temperatures Ta is constant, no matter

Tg

how the pressure of the air and gas change in the process, the same

therefore applying to the volume of the gas or of the aerostat.

19. Since Tg = 1 + Tg - T a , a constant resultant may be

Ta Ta

dictated by a constant ratio T - T i.e. by a constant ratio of
g a _ '

Ta

the temperature difference inside and outside the aerostat to the

absolute temperature of the air.

• 20. For example, let the centigrade temperature of the air

be successively: 0°, 5°, lOo, 15°_ 20 _, 25°, 30 °, 35 °, 40° (the

absolute temperature will be higher by 273 ° ). Let the temperature

of the gas be lO° higher initially or at O°C; then this temperature

difference will rise in response to an increase in the air tempera-

ture, but negligibly, if the resultant is to remain the same:

namely, it will successively increase as follows: lO.O °, 10.2 °, 10.4 °,

10.6 °, 10.7 °, 10.9 °, ll.1 °, ll.3°_ ll.5 °.

21. When the temperature of the air decreases, the tempera-

ture difference must likewise decrease negligibly.

The temperature of the atmosphere surrounding the aerostat

may thus fluctuate to great extremes but the difference in the

temperatures will fluctuate by only a slight amount if the resultant
is to remain constant.

In view of the foregoing, we find for a constant resultant:

T -T
g a

T

a

= const;
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whence_ we may readily calculate the difference T - T at various
g a

given T , as we indeed have just done.
a

22. The simplest case is obtained when not only the pressure

inside and outside is the same, but when even the temperatures are

equal, or the temperature difference is zero.

Then equation (17) or (12) will state

R=u (Ta -
0 0 0 st. QL"

23. This equation includes neither temperature nor pres-

sure_ so that we may state: the temperature and the pressure have

no effect on the resultant: on either its sign or its magnitude.

Consequently, if an aerostat which is free to change its

volume gains altitude, then it will continue gaining altitude in-

definitely under the action of a constant force; if it is losing

altitude 3 then it will also descend with a constant force; if equi-

librium is maintained (R = 0), then the equilibrium Will not be

impaired when either the temperature or the pressure or both to-

gether undergo any kind of changes or when the aerostat is carried

by some stray force into a medium where the temperature and pres-

sure are completely different, provided the temperature of the air

medium is no different from the temperature of the gas enclosed in

the aerostat envelope.

24. All this is valid, as we saw (21), even in the case of

unequal temperatures, provided the difference T - T varies slight-
g a

ly in accord with the variation in the air temperature; when it

rises, the difference must rise slightly, and when it drops the

difference _li._tdrop likewise. This is expressed more exactly in

paragraphs 18 and 19.

25. When the volume of the aerostat changes freely under the

pressure of a light gas, we then have formula (17) for the resultant.

We can easily obtain the changes in the buoyant force on the aero-

stat in response to slight changes in the temperatures of the gas

and air by differentiating equation (17):
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T__g (_.____a).dR
UoTa0 T T T

a g a

26. Hence, as the temperature of the gas rises the buoyant

force increases in proportion, while as the temperature of the air

rises the buoyant force slackens. It is clear that the pressure of

the atmosphere, when equal to the pressure of the internal gas, will

have no effect whatever on the magnitude of the resultant.

27. We derive from formulas (1), (7), and (9) the following

equation for the buoyant force q
b

Tg Pa
Q U m ° u

b = 7a0 0 Ta pg

P
a

28. But as a result of the free expansion of the aerostat_

= p , so that formula (25) may be restated as:
g

dR=_
-EL

29. It is readily seen, then, what the ratio of the incre-

ment in the buoyant force dR is to its total magnitude %. For

example, if the absolute temperature of the gas and the air is the

same initially, say, 300 ° (or 273 ° + 27 °), and were then to increase

by 1°, then the relative increase in buoyant force in the case where
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the temperature of the gas rises would be 1/300. At the same in-

crease in the air temperature, the relative decrease would be 1/300.

30. The invariability of the buoyant force is dictated by the

equation

_T 5Ta 5Tg Tgg
-- or -

Tg Ta _T T
a a

arrived at by setting the second part of equation (28)-eq-ual to

zero.

31. The temperatures of the air and the gas vary naturally

each second. If this change occurs simultaneously and to the same

extent for the gas and for air, or obeys condition (30), then this

change could not affect the magnitude of the resultant, or thereby

the equilibrium of the aerostat. Equal temperatures inside and

outside the aerostat will usually be found in daytime and at night

in overcast weather.

32. Otherwise, the temperatures will be different and will

not obey the rigorous law (30). The difference between the tempera-

tures of the gas and of the air will depend on the clearness of the

daytime sky, on the cloudiness, on the height of the sun, on the
position of the aerostat relative to the direction of the sun's

rays, on the state of the surface on the aerostat envelope, on the
extent to which the envelope is covered by snow or moisture. At

daytime in a clear sky, the temperature of the gas will be in

general 20 degrees higher because the sun will be heating up the

envelope. The temperature difference will also be affected by the

speed of the independent horizontal motion of the aerostat, as well
as by its rate of ascent or descent.

33. At night in a clear sky, the gas temperature will be

lower, in general, than the temperature of the surrounding air,

]ImiiIi
i
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which will depend on the cooling of the envelope by radiation. This

difference will also depend on clearness of the sky, on the cloud

cover, on the state of the aerostat envelope, on how close the aero-

stat is to the earth's surface, on the state of this surface or its

temperature (a factor which is also important in the daytime), on

the motion of the aerostat, etc.

34. Clearly then, both at daytime and at night, unless ex-

ceptional conditions occur, the buoyant force on the aerostat, or

the resultant, must change continuously. Thus the equilibrium of

the airship as achieved by the load and ballast on board, is con-

tinually challenged by meteorological and topographic influences,

so that the height of the aerostat above sea level must be subject

to constant change.

35. But we can counteract all of these effects harmful to

the equilibrium of the airship, by adjusting the gas temperature.

To this end, the temperature T of the gas is maintained artifi-
g

cially far above the temperature of the air surrounding the aero-

stat. When required, the temperature of the gas can be lowered

by reducing the inflow of heat from inside the aerostat, or can

be increased still further by increas_ing the inflow of heat We
thereby achieve a constant ratio T /T , and accordingly a con-

g a

stant resultant R5 If the resultnat R is zero, then, the aerostat

will maintain an equilibrium despite meteorological and other

effects.

Volume of Gas or Volume of Aerostat May Not Change

36. Suppose that the volume of the gas repository can be

neither increased nor decreased. The first will be the case when

the aerostat is filled to capacity; the second will occur at the

same time whenever the walls of the gas repository resist any

force moving them closer together because of the rigidity of the

walls, the thickness of separating partitions, etc.

This case will be encountered most frequently when the

pressure inside the envelope is considerably higher than the pres-
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sure outside.

Then the internal pressure of the gas will hinder any decrease

in the aerostat volume, up to a point.

From formula (4) we find

R = 7aU - 7gU - @st. - @L"

o

a

37. In the equation, only two variables are present: R and
Therefore the increment _ in the resultant will be:

Z_R = UA 7 .
a

Consequently, the resultant will increase with any increase

in the density of the air surrounding the aerostat.

38. Assume for instance a zero resultant R, i.e., the

aerostat is assumed to be at equilibrium_

Then this equilibrium may be impaired through the follow-

ing causes:

a) an increase in the density of the air surrounding

the aerostat, so that the aerostat will climb until the density

has decreased by the same amount _Ta;

b) a decrease in the density of the air, so that the aero-

stat will descend to a layer of air having the original density.

39- The foregoing may be expressed as a function of a

change in the air temperature and air pressure.

By differentiating equation (7), we find
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TO Pa SPa 8Ta

a = 7a 0

% Po Pa

Clearly, any increase in the barometric pressure (with the

temperature remaining the same) means that the air density, and con-

sequently also, the resultant will also increase, so that the aero-

star will have to climb if it was in equilibrium before then.

As the air temperature increases, the air density and con-

sequently also the resultant will have to decrease, so that the

aerostat will have to lose altitude, if it was in equilibrium

before then. A decrease in the temperature will bring about the

opposite effect.

40. When the air temperature and air density vary simul-

taneously, the equilibrium will be impaired, provided that con-

dition (39)

_Pa _Ta

p T
a a

is satisfied, i.e., the relative temperature and pressure increments
must be the same.

When the pressure increases and the temperature decreases,

it is readily seen that the resultant will undergo a double in-

crement.

41. On the basis of equation (7), formula (39) transforms to:
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dF = F "_
a a Pa Ta

and, on multiplying both parts of the equation by the volume U,

we find

a = UTa Pa Ta

On the basis of equation (i), then, we may state: the

relative increment in the buoyant force compared to the total

buoyant force is expressed by the formula

a d%

UTa Qb Pa Ta

42. We refer to the pressure p of the air surrounding the
a

aerostat. But this pressure is not the same on all parts of the aero-

stat. It is lower on the top of the aerostat than on the bottom.

p may be taken to mean the average pressure on the aerostat. More-
a

over, the pressure of the internal gas also cannot be considered the

same on different parts of the interior of the aerostat, since this

pressure will depend on the extent to which the envelope has been

filled. Therefore, our statements on an aerostat having a freely
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varying volume are not quite exact.

The pressure outside (p) may be only approximately equal to
a

the pressure inside (p). Even a completely filled and blown-up aero-
g

stat could not retain its volume unchanged, strictly speaking, despite

any changes in the pressure difference inside and outside the aero-
star.

All of this discussion makes it clear that our earlier for-

mulas fall short of being ideally e_act. They represent no more

than one step toward the recognition of certain truths. A second

step may bring us still closer to those truths, but our formulas
will then have become much more complex.

43. To complete the picture, we presented here also for-

mulas referring to an aerostat which undergoes no change in volume,
but such an aerostat cannot withstand criticism in actual practice.

In fact, an aerostat fitting that description would have to be in-
flated up in such a manner that the gas pressure inside would con-

siderably exceed the external air pressure. This pressure dif-

ference would require an unusually tough envelope. Moreover, any
increase in that difference because of an increase in the internal

temperature and because of a decrease in the barometric pressure

(or because of the ascent of the aerostat) will contribute to the

rupture of the envelope or, in the best case we can hope for, to a
loss of gas from the envelope. .....

Constancy of the gas volume will also deprive the aerostat

of the ability to vary its buoyant force or to maintain its equi-

librium by varying the temperature of this gas without losing bal-
last and gas.

II. VARIATION IN AEROSTAT VOLUME

44. In practice, the aerostat cannot increase its volume

without bound, and we will therefore determine precisely to what
extent this volume must be increased as a result of the forces act-

ing on the ground and in flight. This is very important, for
ignorance of the extent of expansion of the gas enclosed in the

balloon may entail the rupture of the balloon or a loss of gas --

when the safety valve is operating properly.
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45. If the volume of the gas is U when the absolute tem-
0

perature of the gas is T and the pressure is p , while at a dif-
0 0

ferent temperature the absolute temperature of the same gas is T

and the pressure is p, the volume of the gas is U, we will have, on

the basis of the familiar properties of gases

u T Po
m o •

U0 TO P

This formula shows what portion of the total volume U of
0

the aerostat must be filled as the quantities T and p change to
0 0

Tand p.

If the temperature of the gas and the pressure on the gas do

not vary, then it would be more sensible to fill the aerostat with

gas to the very limit possible without rupturing the balloon. But

the gas pressure and gas temperature may vary owing to meteorological

factors and artificial causes, and hence also during ascent°

Equal Gas and Air Temperatures

46. Consider the effect of the barometric pressure. Baro-

metric fluctuations increase poleward from the Earth's equator; but

even at latitude 65 ° they will not attain 75 mm. Hence,

PO 720

p 795
= 0.9057.
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Accordingly, for that reason we can fill up only 9/10 of the

volume of the aerostat, assuming a Constant temperature.

47. The effect of the temperature is much more striking.

The lowest cold temperature recorded on the surface of the

earth was -55°C; the highest air temperature in the shade, +47°C.

The amplitude exceeds I00 ° . The ratio of the absolute extreme

temperatures will be:

T 273 - 55

TO 273 + 47

- o.68o.

This means that only about 2/3 of the greatest volume of

the gas repository could be filled up for that reason.

48. Taking both factors into account in our calculations,
we find

U

--= 0.618,

U o

i.e., slightly more than 3/5 of the entire volume.

49. Clearly then_ the aerostat cannot be filled up once

and for all for all the variations in temperatures and pressures,

as this will be too inexpedient at high pressures and low tem-

peratures. Actually, even though the buoyant force were to remain

constant the whole time, it would have to be at its maximum. The

above does not imply that the relative amount of the gas involved

in filling up the balloon must comprise 3/5. This quantity is, of

course, dependent on both the temperature and the pressure during

the filling-up process.
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If we introduce, in place of T in formula (45), the
0

maximum temperature Tmax, and in place of P0 the minimum pressure

Pmin' we shall then have

U T Pmin

U0 T POmax

This equation indicates the relative extent to which the

aerostat is filled at temperature T and pressure p.

50. For exmmple, T = 47°C' mP "n = 730 mm Hg; now wemax

fill up the aerostat at O°C and at pressure 760 mm Hg; we then

find

u__= 273 73o
u0 4T+273 " _ =°'82'

or the aerostat must be filled to roughly 4/5 of the total volume.

Constant Results nt _orce

51. We did not take into account heating of the aerostat by

sunlight and its cooling by radiation, such that the temperature of

the aerostat will not be equal to the air temperature.

I
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But we did see that, by regulating the temperature inside

the aerostat, we could achieve a constant resultant (4) or, in

other words, a constant buoyant force (1).

From formula (1), we find U = Qb , where the buoyant force

7

is conditionally a constant°

This means that the volume will vary in inverse proportion to

the density of the air surrounding the balloon.

52. Eliminating 7
a

equation (7), we obtain

from this last formula by means of

% P0 Ta

p T
?a 0 a 0

or the dependence of the volume on the change in the temperature

T and on the pressure p .
a a

In the course of several hours of flight, the air temperature,

and in particular the air pressure (the barometer reading), could

not have time to change very much.

Thus, when the temperatur e is being regulated, the change

in aerostat volume will be dependent solely on those very slowly

varying conditions, and not on the heating by the sun, shading by

clouds, cooling at nighttime, or other f_ctors.

53. By differentiating this last equation with respect to

the variables Ta and Pa' we obtain

wB 0 Pa TO T p
0 a
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54. By means of equation (52)_ we may eliminate the buoyant

force % from this equation; we then obtain

a

U T p
a a

hence the relative change in the volume is expressed by the relative

change in the temperature minus the relative change in pressure;

for example, at 0°C (273 ° ), a lO°C increase i_ temperature _i_l

bring about a relative change in volume by 10/273, or about 1/27.

A decrease in pressure by lO mm Hg at an initial _pressure of 760 mm Hg

will bring about a further change in volume by ]/76.

Vertical Movements of the Aerostat

Am a Cause of Changes in Its Volume

55. A still greater change in the volume of the gas accompanies

the ascent or descent of the aerostat, which must be performed for a

variety of reasons. For example, in flying over mountains, in hover-

ing over both high and low points on the earth, in catching up with

a favorable air current and favorable temperature conditions, it is

sometimes advantageous, and sometimes imperative, for the airship to

perform vertical movements.

Let us determine the relationship between the height H of the

point above sea level, the temperature, pressure, and the rarefaction

or density of the air at that point.

56". Everyone knows that the temperature of the air de-

creases as the elevation above sea level is increased. But the law

obeyed by this change in temperature has yet to be discovered. It

is supposed, on the basis of observations, that the drop in tem-

perature is more or less proportional to the height attained and is

I
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about 5°C per km of ascent. The drop in temperature with elevation

and vice versa can be explained in various ways.

57° From the standpoint of the mechanical theory of heat,

gas molecules accelerate on moving downward, so that the tempera-

ture of the gas increases. The speed is lessened in the opposite

direction because of the effect of the earth's attraction, and

this corresponds to a decrease in the temperature. Calculations show

that the extent to which the heat diminishes will be proportional to

the elevation of the place and will be independent of the oscilla-

tion amplitude of the gas molecules, while the extent of this de-

crease will be proportional to the molecular weight of the gas.

58. Thus, we find for oxygen about 10°C per km of ascent,

for for hydrogen (were our atmosphere a hydrogen atmosphere) a change

of 16 times less, i.e., less than l°C per km.

These calculations are not entirely justified, since the

sun does not heat the upper and lower layers of air uniformly.

The temperature nonuniformity will have to increase still further

on that account. Moreover, these calculations are further invalidat-

ed by the fact that the lower layers of air and the surface of the

earth itself tend to continuously heat by radiation the upper, less

heated, layers. The ether waves tend to reestablish the temperature

equilibrium disturbed by the incessant action of gravity on the

falling and rising air molecules.

For the same reason, the theoretical law of decrease in

temperature in proportion to ascent, and the amount of that decrease

at lO°C per km of ascent, is also not entirely justified.

The cloud layers, the differing degree of air humidity, and

a host of other factors render this law of temperature decrease

capricious and elusive, like the weather itself.

59. The rise in the temperature of the earth as one pro-

ceeds deeper down into the earth, could also be explained from this

standpoint. The molecular weight of the complex terrestrial rocks

is far greater than that of air, so that the temperature drop must

be far more pronounced. For example, take aluminum oxide or

alumina, A1 0 . Its molecular weight is 102. The molecular weight
23

of the oxygen molecule 0 is 32, on the other hand; thus we see that
2

the weight of oxygen is only one-third that of alumina, so that the

rise in the temperature of alumina will be three times greater than

the rise in the temperature of the atmosphere, i.e., about 30°C per

km; this is validated almost exactly: the heat conduction of

fragmented soil particles is very small, and therefore the lower
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heated layers heat the upper layers only very slightly.

60. But let us return to air. We may use another point

of view to account for the law of temperature decrease with eleva-

tion.

The temperature drop depends on the absorption of heat by

the air as a result of the work done in gaining altitude and in

expansion. The air has not only horizontal motion, but also

vertical motion, which must be accompanied by compression and expan-

sion, and consequently also by the heating and cooling of the air.

61. If we accept this alone as a basis, and assume that

the upper layers are not heated by radiation from the warm lower

layers and from other causes, we may arrive again, theoretically,

at the earlier law, and at the same coefficient of lO°C.

We now have U _'i
- , where one and the same mass of gas

initially has volume U and density T , but later a volume U
1 1

and a density T.

62. Further, designating the heat capacity of the gas with

volume held constant, or its specific heat, as c , and the mechani-
v

cal equivalent of heat as M , we find, on the basis of the law of
e

conservation of energy

1

_u = - U171Cv _- dT.
e

Here p is the pressure of the gas or the pressure per unit

area at a volume U and absolute temperature T.

63. But
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• T U1 ;
p=p

1
T1 U

corres_o_as_--- to U and T •
and here P 1 1

1

Accordingly,

1
T

Pl ___ dU = - c
• T1 v M

U T e
1

dT ,

or, separating the v_riables, we find

dU
64° _=-

U

Putting TI I
C

v MP
1 e

T = const, we now find

1

65,
- const •

dT d U

T U
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Integrating this equation and determining the constant of
integration, we arrive at

66. const " In_T_l)= in _i_ ;

from the last formula_ we obtain in turn:

const

U T 1
1

1

const

68° Formulas (67) enable us to find the decrease in the

air temperature according to the given rarefaction U of the air,
U
i

and vice versa. Assuming the atmosphere to consist of some "constant"

gas, we note that the value of the const in equation (64) will remain

a constant in accord with the familiar properties of gases. Actually,

for a known p the density T and specific heat c of the gas will
i i v

depend on the nature of the gas_ but the product T c will neverthe-
Iv

less remain constant. Clearly_ hence, the degree of cooling accom-

panying the expansion of a constant gas will not be dependent upon

the nature of the gas; the same holds for the heating attendant upon

compression.

69. Since we have U P__I. T
U- = p T , we find, on the basis of
1 1

formula(67)
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1

T = T_p _ const
T
1

whence

70.

1

1

i+const "

71. Now, on imagining a vertical column of air endowed with

weight, we can set up the following differential equation to ex-

press the fact that the increase in pressure on the column is pro-

portional to the increase in the mass of the column and to the ac-

celeration due to gravity g:

p T1

-dp = 71 .... g . dH.

Pl T

Here dH is the differential of the height H of the column of

air, g is at 45° latitude, and is unity according to laplace. On

other latitudes, according to this scientist, we shall have

g = 1 - 0.002552 cos 2_o,
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where _ is the latitude of the point in question I.

72. In place of equation (71), we may find, on the basis of

formula (70)_ the equation

-const -const

l+const l+const

-p dp --g7 P • dH.
ll

Integrating this equation and determining the integration con-

stant, we find

73. const + 1
H=

71g

1

pl I1 - _-l_l+c°nst _ .

74. Here const + 1 = 3.441 and
1

i + const
- 0.29o6.

1
Here we do not take into account the decrease in gravity with

height. This decrease amounts to about 1/600 in an ascent 5 5 km.

At higher altitudes, the decrease in gravity cannot be disregarded.*

*All numbered footnotes are the author' s. (Edit.)

11iii
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The height corresponding to p and T is assumed to be zero.
1 1

75. From (73), we obtain

p = 1 - (const + 1
1

l+c onst

Hence and from (70), eliminating the ratio p/p

I

we find

76. p Tlg
=i

Pl (const + l)p I

° H"

From this equation, with the aid of formulas (75), (63), and
(61), we compute

const

UI PTI i

TI U pi T (const + i_i

78. Formula (76) may be stated as:
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-71gTI
T-T = " H.

i (const + i) Pl

Clearly 3 from this formula, the temperature decrease _s
proportional to the height H, the acceleration due to gravity g,
and the gas density T. And since the density is proportional to the
molecular weight and inversely proportional to the specific heat Cv,

the temperature decrease will be inversely proportional to the specific
heat of the gas and directly proportional to its molecular weight.
Westated this last point earlier in general terms, even in reference
to terrestrial rocks.

From esuation (77), it is clear likewise that the degree of
rarefaction U/U of the atmosphere depends not only on the height

1
of the place_ but also on the acceleration due to gravity and on the
gas density 7.

79. For H = 1000meters, using formula (78) we calculate a
temperature decrease of 12.8°C.

If we assumethat parts of the atmosphere feature rapid
vertical movements,with the lower warmlayers failing to heat by
radiation the upper cold layers and with the sun and other factors
having no effect on the temperature of the air, then the thermal
state of the air and the degree of rarefaction will be expressed as
functions of the altitude by these last formulas.

Conversely, if weassumethe temperature of the air to be
constant, then we can easily derive laplace's formula, but not the
complete formula. If we assume, on the basis of observations, that
the temperature decrease is proportional to the height_ then we can
makea correction, which in theory will be inemact, in that formula
by assuming the height H to be proportional to the average absolute
temperature. Thenwe shall obtain the complete Laplace formula.

Even though we derived the temperature decrease of lO°C per
km of ascent distance theoretically, this is still not in agreement
with reality, for the reasons explained above.

Thus, Coxwell found an average temperature decrease of 4°C
per km in his air travels. Biot and Gay-Lussac found 6°C, Sessure
found 7°C in this ascent to Mont Blanc, and Humboldfound only
5°C.
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In general, experimental findings more or less confirm the

view that the temperature decrease is proportional to the height of

ascent_ but the actual extent of this decrease proves to be half that

which we calculated. It follows that the temperature decrease due

to vertical movements and the temperature increase due to radiation

and other causes are, as it were, two equal forces yielding an

average temperature difference of 5°C.

80. We therefore assume in formula (78) a multiplier _ less

than unity and close to 0.5, and we put

T T1 (const + I

i

or

81. T

T = I " AtH
i

where At denotes the temperature gradient, so that

H

82. &t
H

_7_g

- (const + !)p
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Clearly, _t expresses the relative temperature decrease per
H

unit of H.

We now set up a differential equation similar to (71). Elimin-

ating T/T in this equation by means of (81), and separating the

1

variables, we obtain

83. ____=
P

71gdH

p (1-

On integrating this equation, we find

84. 71g

_i)_ H).In Pl AtH In (i - _t H

find

Whence, on eliminating At
H

by means of equation (83), we

85.

+ Ib I

const+l

• H_



57

and then, according to formulas (61), (63), (80) and this last

equation, we arrive at

8_B

const+l

ul 7 p TI F _ig ] _- - "_=L I- " H
T (const + l)p

U )'l Pl 1

-1.

87. In order to check our formulas and also to show

whether or not the Laplace formula features complete exactness,

we will derive it from equation (85).

On determining the height, we find from that equation:

H = (c°nst + 1)pl I1- _l) c°nst+l _ ,

or, on the basis of (82)

]_l-At

88. If we expand the exponential function in this last for-

mula into a series, we obtain
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H- • in +-- "In +
At const + i " I. 2 const + I

H

1"2"3 const+l 1.2o3o 4 const+l

l] . in¢+}{l+ [ " in +

&tH( const+l ) const+l

3 const+l _JJ + _ const+l " " "

i/At

H

The expression in brackets with the multiplicative factor

is approximately the height H. We therefore write:

° in +-_- g

At (const + !)
H

or, in accord with (82):

H=-- " in

¥1g
_t H )i+-- • H .
2
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89. On the basis of (81), we see that At expresses the

H

relative decrease in temperature per unit of ascent distance, i.e.,

At H = At . The product (At
H T H

i

° H) will be the total relative de-

crease in temperature with ascent to a height H. Consequently, we
may restate the formula as:

plH=_" In ÷ °

wig

Here At is the temperature difference of the two localities,

and T is the absolute temperature of the locality of the lesser
i

altitude.

The nature of this formula is almost the same as that of the

Laplace formula; it shows that the height H is inversely proportional,

and is directly proportional to the mean absolute temperature of the

column of air. But there is a slight numerical difference in the

determination of the height, which is quite understandable, since

only Regnaud, long after laplace, gave sufficiently exact coefficients

of expansion of gases, and thereby made it possible to determine the
absolute temperature TI.

90. We can also restate formula (89) in a completely Laplacian

form. Actually, we find from equation (82):

1Gay-Lussac found the number 0_00375 for the expansion coefficient,

a figure later confirmed by Dulong and Petit. Dalton arrived at

almost the same value. Rydberg obtained 0.00365, and Magnus ar-

rived at almost the same. Regnaud obtained about 0.00366. We have

adopted this last figure, of Regnaud.
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&tH • H_

T1 - T

T
1

But since T = 273 + t and T = 273 + t, where t and t are the
1 1 1

usual centigrade temperatures,

At • H -tl't

H
T
1

and

i +
At H " H 2TI - tI + t 2"273 + tI + t

2 2T 2T
I i

273

T I

tl+t

2T
1

Now, in place of formula (89), we obtain

273 Pl [H= i+

TlYlg log e
4 " 273
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Here log e = 0.4343_ and the reciprocal of the modulus is

2.3025.

The preceding formula is more elegant than this one, but we

derived it in order to afford a better comparison with the Laplace

formula.

Pl 273 P0
Note that -- • - , i.e., it is equal to the ratio of

71 T 1 70

the air pressure at zero temperature to the air density at the same

temperature; we see then that this is a constant for any gas.

Consequently, putting g = 1 (for 45° latitude), we find the

height in meters:

= 18405 _l + 2(tl+t _ log _ Pl).

lO92 p

This formula differs from the Laplace formula solely in the

coefficient accompanying (t + t ), which according to Laplace is
1

equal to lO00. The error in the height according to the formula of

the renowned astronomer could be significant when the temperatures

(t I + t) amount to large sums, but this will not be normally en-

countered. We repeat that with this correction Laplace's formula

could be assumed ideally e_ct [cf. (87) and (88)].

We have to use formula (89) or (90), or better yet formula

(87), which has absolute exactness for a gaseous atmosphere, pro-

vided the temperature decrease is strictly proportional to the

elevation [instead of (87), we could have also used formula (94)].

91. We should not forget that our aim is to determine the

expansion of the aerostat volume as the aerostat gains altitude.

Formula (86) may serve this purpose. For in this formula,

_Tlg At
according to (89) and (82), ° H = _ , so that we

(const + l) Pl T1

can eliminate _ from the exponent in formula (87); we then find
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92.
TlTlg
__}{- i

UI 7 < _t) At "pl

U 71

where At is the temperature difference between the two points, ex-

pressed in centigrade degrees.

93. Likewise, instead of formula (85), we obtain

Pl TI At "Pl

" H,

whence

94.
At " Pl log _ _--_

TI " 7ig log _< T1
TI - At ")

95. According to formula (92) or (86), we may compile a

table of the ratios of filling of the aerostat with gas for an

ascent from sea level to some height.

We assume _ = !/2 as a start, i°e., a temperature decrease of

5°C for every kilometer of ascent' TI = 0.001293; g = i [for

latitude 45°, cf. formula (71)]; Pl = 103.33 kg per square decimeter;
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const = 2.441; T = 273 °, i.e., 0°C.
i

We find the temperature from formula (78) and convert it to

centigrade degrees (cf. Table i)o

We present also Table 2 for the variation in air density up

to an altitude of i00 kin.

97. Clearly, from Table i, an ascent to a height of 6 km, for

instance, would mean that the aerostat could be filled while below,

at sea level, with gas to only 1/2 its total volume. The tempera-

ture decrease is proportional to the increase in height only for

moderate heights; further up it will increase not quite so rapidly,

so that the height of the atmosphere will be far greater than in-

dicated by our formula. In general, the formula can be applicable

to the extent to which the law of temperature decrease which we

adopted remains applicable. Up to 10-20 km_ the formula will yield

results reasonably close to reality°

98. If we assume no change in temperature, then equation

(89), for instance, will lead to

p UI -Tlg

--_ - e Pl

Pl U

-- • H

where e is the base of the Napierian logarithms. Assuming the

same conditions as before, but a constant temperature of O°C, we

now proceed to calculate the degree to which the aerostat will be

filled (cf. last column in Table 1). On comparing the last two

columns, we see that less hydrogen will have to be taken on when

the temperature is constant, but the difference is slight even at

a high altitude; for example, at an ascent to lO km, in the presence

of a progressive decrease in temperature, about 0.300 of the balloon's

volume will be filled as compared with 0.283, or just about the same

fraction of the volume, when the temperature does not change. We

may note, further, that this difference will increase gradually,

will attain a peak at an altitude of 6 km, and will then decline and
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v_sish at a fairly significant height, so that the filling ratio
U/U at that height will be the same, regardless of whether the

1

temperature in the atmosphere decreases or not.

99. For low ascents, formulas (86), (87), or (92)may be

simplified -- the results will come out the same.

Thus, from equation (86) _e have

1
H =

At
H

If we expand the power function in this equation into a

series, we obtain

H

At
H

• in Q +_ _ +
const+l_1] 1"2 const+l-1]

+
i I] _-]3

[ • }
1"2"3 const+l-1] in _--_JJ + ....

This is a rapidly converging series. Restricting ourselves,

therefore, to the first term in brackets, we obtain
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i00.
H _.

(const + 1 - I])At
H

The simplification may be carried even further if we also

expand In <71) into a series. When this is done, we find

T

I01.

7

+l 7

71 3 71

--+ 1 _--+
7 T

3

"_ ooe

Noting that this is also a rapidly converging series, and

again; dropping all but the first term, in the denominator of

71
which--_ i, we find

7

102.

In¢_> = W--I---I.
7

Accordingly
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103.

(const + 1 - _)At
H

whence

71 U const + i -

--=--=i+ ° At H '

7 U1 "_ H

On the basis of (82), on the other hand, eliminating &t ,
H

we obtain

104.
U (const + i - _)71g

U (const + i) Pl1

° H "

105. Assuming here, for sea level and normal conditions:

= 0.003293 kg/dm 3, c = 0.169 cal, g = I00 dm/sec 2, M -
1

i v e 4240

cal/kg-dm, T = 273 ° (or O°C)' Pl = 103.33 kg, and _ = I/2, we
i



7o

find const = 2.441 and

106. U = 1 - 0.I0748H_

U 1

where H should be expressed in kilometers.

U

Thus, when H = i km, the filling ratio _ will be 0.902 _ and
J_

will be 0.896 according to the exact Table i; the error is about

1/150 of the quantity to be determined. It is clear that this last

formula could not be applied for ascents exceeding I km, but it could

be adapted to plateaus of any elevation except that the constant

factor will be different.

107. Formula (I00) is more exact_ and from it we obtain

(const + I - _) At
H .

H_

or, on the basis of (82) and conditions (105):

(const + I - _) 71g

(const + i) Pl

• H : 0.1075H;

lg (_)= o.o46684_.
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Here the common Briggs logarithm is expressed as a function

of the height in km.

U I

108. If, for example, H = i kin, we find _ = 0.898, and the

error (T_ble i) will now be far less, to be specific about 1/500 of

the quantity in question. Moreover, this last formula may be ap-

U I

plied over a far wider range. Thus, putting H = I0 km, we find _ =

= O.3413, whereas from Table I we find about 0.3. Therefore, the

error is not very great in this case, too.

109. Apropos, according to the Babinet formula we may provide

a simplified formula for the height as a function of the ratio pl/p

of the barometric heights or pressures at two extreme points. For

this purpose we take formula (89). In this formula, we find, by

expanding the logarithm in a series:

Pl

P

Pl

-f+l

tain
Discarding all but the term with pl/p close to unity, we ob-

<_ Pl - p
in =2 ( p1 + P >.

Consequently,
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Pl " p At

71g Pl

Here _t is the temperature difference between two points_
which is usually positive.

llO. Let us bear in mind (in calculating the coefficients),
Pl PO T1 Pl
..... equals the ratio of the pressure POat

that 71 70 273' i.e., 71 T
1

zero temperature to the density at that temperature multiplied 2-_'
for which see formula (90).
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III. OF WHAT MATERIAL SHOULD THE AEROSTAT BE MADE?

Iii. The formulas and theorems derived here are valid only

if the mass and the composition of the gas filling the aerostat re-

main unchanged, i.e., if the envelope completely isolates the light

gas from the atmosphere. And this would hardly be possible if an

envelope made of material of plant or animal origin were utilized,

since all these materials are permeable to gases, even when there are

no visible holes in them. This depends not on the difference between

the pressures inside and outside the aerostat, but on the independ-

ent, very rapid_ and never ceasing motion of the gas molecules, which

in one way or another will penetrate any envelope of organic origin.

Thus, the aerostat will not only lose some of the light gas

with which it is filled, but will also acquire a proportionate

amount of the heavier air, forming a mixture of gases, including the

light gas itself. The volume acquired will be 3 to 4 times less

than the volume lost (depending on the nature of the gases inside

the aerostat) in accordance with known diffusion laws.

Thus, two phenomena are going on at the same time: a decrease

in the volume of the interior gas and an increase in its mean den-

sity. As a result, the buoyancy of the aerostat will decrease s and

the opposing force, i.e., its weight, will increase, so that the aero-
stat either descends or tends to descend.

If only it were easy to expel the air drawn into the envelope

and replace it with light gas_ But in practice this is impossible

without releasing all the gas in the envelope.

An organic envelope is inflammable, and this constitutes a

serious inconvenience, since it eliminates any possibility of uti-

lizing fire and fire-operated engines on board the aerostat. In fact,

a single spark or jet of incandescent gas or air might set fire to

the hydrogen and the tenuous envelope of the aerostat and cause a

catastrophic crash and the death of the crew.

It would be preferable to use a metallic material in building

the aer0stat. Moreover, such a material would be impermeable and

fire-proof, as well as endowed with a number of other advantages such

as: strength, durability, cheapness, and nonhygroscoplcity. By

making it safe to use fire on board, it would also make it possible

to vary the temperature of the gas over a certain range, by means of

the combustion products, and thereby facilitate vertical control of

the aerostat without loss of gas and ballast.

112. But despite its advantages, this material also has cer-

tain shortcomings. First of all, metal is heavy and the question
arises: could an aerostat raise a massive metal shell aloft?



74

Would it not be found necessary to use iron, or some other metal, so

thin that it would defy successful fabrication or rapidly tear,

crumple, curl up, or rust away. Finally, might not the stiffness of
the metal constitute an insurmountable obstacle to the use of this

type of material?

Actually, the first attempts to design a spherical metal

aerostat ended incomplete failure*. But then Schwarz built an

elongated metal dirigible and successfully flew it. Thus, the view

of the VII Aeronautical Section of the Imperial Russian Technical

Society_ which had examined my own plans for a metal dirigible in

1890, long before Schwarz's experiment, was confirmed; the Society

expressed the opinion that aerostats would probably be made of metal

as time went by.

I13. I shall calculate the radii of spherical aerostats made

of metal sheet of different thickness and designed to lift only the

envelope and the gas.
We have

43 wR3 (Ta - 7g) = 4wR2qen v,

where w is the ratio of the circumference to the diameter; R is the

radius of the sphere; q is the weight of a unit area of the en-
env

velope, and 7air - _gas is the difference in the densities of the

air and the gas. From the equation, we find

3qenv
R =

7air " Ygas

*In 1831, Dupont-Delcour and [Marey] Monge designed a spherical aero-

star made of copper. Their experiment was not successful.
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Clearly then, the envelope may be arbitrarily massive or

thick, provided the radius or size of the sphere is proportionately

large.

114. If we assume that the aerostat is filled with hydrogen,

we may calculate as follows, using formula (113).

Consider an aerostat made of aluminum 0.08 mm thick; one

square meter of this envelope weighs about 0.2 kg. The diameter of

the sphere will be one meter. Do not imagine that this material is

very frail: I have a calling card in my possession which is just as

thin, yet to the touch it feels just as tough as an ordinary calling

card made of thin cardboard. We could use copper foil to achieve

the same results, but it would be much softer. Sheet brass 0.07 mm

thick 3 i.e., almost the same thickness as the aluminumj would re-

quire a diameter of 2.8 meters. Iron of the same thickness is much

stronger and slightly lighter. Iron or copper material twice as

thick_ one square meter of which weighs about I kg (1.14 kg to be

precise), would require a diameter of 5-7 meters. Sheet tin, like

that used for the lids of shoe-polish cans_ etc._ is a good example

of material of this type. If we used material twice this weight,

for example, the tin used to make cheap tin lampshades, molds for ice

cream, etc., then the diameter of the sphere would have to be twice

as large again, i.e., about 11.4 meters.

115. It would be most difficult to make a spherical metal

aerostat_ so I do not suggest that this shape be used for the actual

construction: my purpose is solely to indicate the size of the

sphere in relation to the weight of the envelope and the degree of

feasibility.

Aerostats made of the same materials but with twice the

linear dimensions would be capable of lifting not only their own

weight but also a useful load equal to the weight of the envelope.

116. The problem of coping with meteorological influences

makes heating the gas essential. 0nly by controlling the tempera-

ture of the gas can we hope to achieve vertical control without

loss of gas and ballast. No other means could possibly counteract

the powerful heating effect of the sun's rays* (on this point cf.

*Incidentally, I might point out that Meudebec agrees completely that

heating is the best way to obtain vertical maneuverability_ pro-

vided there is no danger of a conflagration consuming flammable

envelopes.
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• " 0 tK. Ts1olkovskiy, Pr s o_9' ucheni_e o vozd_om korable" [A simple

treatise on the airship]). And once fire is employed, envelopes

which are nonflammable or at least not susceptible to fire hazards

will be required.

ll7. As for the problem of coping with the stiffness of

metallic materials, there will be time enough to deal with this

highly involved question hater.

i

i
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IV. CERTAIN CONDITIOK_ WHICH MUST BE SATISFIED

BY ANY DIRIGIBLE

I18. The use of metallic material is not a prerequisite for

the maneuverability_ but it is a prerequisite for the practicality,

safety, cheapness, popularity, and development of airships. More-

over, this material may be considered indispensable to vertical

maneuverability and vertical control. The other conditions which an

aerostat must satisfy are the following.

a)* It must be slender and taper horizontally at both ends,

so as to offer minimum resistance to the wind when moored to the mast

or moving freely through the air. In this respect, the aerostat must

resemble a fish, bird, or cruiser.

b) Not only the envelope but all parts of the aerostat must

come as close as possible to satisfying this condition.

c) It must be possible to vary the volume of the aerostat,

or the volume of the gas envelope, without impairing the smoothness

of its shape and without causing wrinkles which might lead to in-

creased drag or cracks. Variation of the volume is necessary to en-

able the light gas to expand and contract freely in response to the

temperature and pressure changes encountered during an ascent to

great heights.

d) The aerostat must be sufficiently strong, i.e., it must

offer sufficient resistance to the pressure exerted by the gas, to

its own weight, to wind loads, and so forth. This is achieved by

giving a certain thickness to the parts of the aerostat and by

making them of the best available materials.

e) The aerostat must be in stable equilibrium in the hori-

zontal position; in other words, it must have a stable direction of

the longitudinal axis. The horizontality of this axis must not be

disturbed by changes in engine load_ even when the engines are

stopped or started. Its stability must also remain unimpaired when

people move around in the gondola, and in the presence of irregular,

i.e., nonhorizontal, nonlinear, or nonuniform motions of the air

surrounding the aerostat.

f) The aerostat must be capable of ascending and descending

without losing gas or ballast.
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g) The aerostat must be capable of varying its lift or buoyan-

cy, to accommodate changes in the weight of the Cargo or passengers,

and in order to cope successfully with meteorological influences,

principally the variable force due to sunlight acting on the envelope.

h) Exhaustion of the combustible fuel responsible for the

independent motion of the aerostat must not result in loss of alti-

tude.

i) The independent horizontal velocity of the aerostat must

not he small or insignificant compared with the wind velocity.

Briefly, the velocity must not be less than the velocity of a strong

gust of wind.

In specifying these requirements, we simultaneously describe

the gas airship that meets them_ as I shall prove later by calcula-

tion. In due course_ I shall examine the methods of building an

aerostat and controlling it in flight, and several other questions.
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V. BRIEF DESCRIPTION OF A METAL AIRSHIP*

119. Figure i (right) shows the parts of the aerostat pro-

jected onto a vertical plane passing through its longitudinal axis,

in other words, a longitudinal section.

Fig. i (left) is a transverse section along the line A-B, or

the projection on a transverse vertical plane.

In general appearance our metal airship resembles an ordinary

dirigible. The shape of the envelope, the propeller, the rudder,

the gondola, and the motor are all more or less the same.

120. It is even easier to demonstrate the possibility of de-

signing an elongated metal bag capable of changing shape and even

of folding flat without suffering damage and without losing its

generally smooth shape than I thought when I made my earlier con-

tributions on this subject (Aerostat metallicheskii, up_

[The Metal Dirigible), and Prostoye uchenize o vozdushnom korable

[A Simple Treatise on the Airship]).

121. Join two rectangular strips of cardboard so that a

shape identical with the longitudinal section of the aerostat (Fig.

i) is formed. Then glue thick paper across one or both faces of

this elongated cylinder; you will end up with something in the

nature of an elongated drum or sieve (Fig. 2).

This constitutes a model of the aerostat, though one of

fixed volume.

122. But with a sharp knife we can cut the flat sides of

this bag into parallel strips perpendicular to its longitudinal

 xis (Fig. 2).
Now, by squeezing the curved walls of the cylinder, forcing

them closer together and allowing them to spring apart, we can show

*This description is intended to give the reader some idea of what

a metal aerostat is, so that he will be in a position to understand

what follows; however_ the description lays no claim to complete-

ness, nor is it by any means the last word. On the contrary, as

we shall see below, important modifications of the airship design

described are both possible and useful. I shall devote a special

chapter to an analysis of these modifications.
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that the volume and shape of the bag can be madeto vary quite dras-
tically without any folds being formed. But the rub is that gaps will
form between the vertical strips; these gaps will be the narrower the
more elongated the bag and the thinner the strips themselves (Fig. 3)-

A-B
t

B

Fig. I

Fig. 2

Fig. 4 Fig. 5

123. It will be of some help if the strips are made in ad-

vance out of corrugated material, such as corrugated paper, the cor-

rugations in which should run the length of the strips; Fig. 4 il-

lustrates one such strip.

On making a bag out of strips like these, but this time pre-

joined to form a single whole (Fig. 5), we obtain a leakproof paper

or metal tank (gas holder), sealed on all sides and capable of a

wide variation in shape and volume under certain conditions, de-

terminable by mathematical analysis in conjunction with data on the

properties of the materials, and even of folding flat without burst-

ing or crumpling (of course, only the side walls fold flat).

124. The metal envelope of our airship can be constructed in

the same or a similar manner. This envelope will be made of corru-
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gated metal sheet with the corrugations following the circumference
of transverse sections through the aerostat (Fig. i).

125". But besides this thin corrugated sheet, the envelope
will also have certain moremassive parts: there will be two pairs
of longitudinal girders_ running the length of the envelope at top
and bottom, and a numberof circular transverse ribs, resembling
barrel hoops, serving to connect these girders together (Fig. i).
Fig. 5 will also help the reader to understand the arrangement of
the envelope and its stiffening members. The ends of the envelope,
even though they are still more solidly reinforced, form smooth
conical surfaces.

126". Fig. I showshow the gondola is held in place, that is 3
the suspension of the passenger cabins, cargo and machinery compart-
ments, etc. It hangs from two systems of vertical chains, which are
anchored to the two upper longitudinalgirders. These chains pass
freely through the bottom girders. Thus, the top of the envelope
is pressed inward along its entire length, so that the gas inside
the aerostat is constantly under a slight pressure. Whenit expands,
the envelope swells, the gondola is raised, and part of each chain
runs through a gastight seal located inside the aerostat] whenit
c_ontracts, the envelope closes up, its volume diminishes 3 and a part
of each chain is pulled outside.

127. Whenthe chains are connected thus, the aerostat is, as
i t were, always full (rounded out), and its longitudinal axis will
be fairly stable. But this requires that the chains be connected in
someway to the pair of lower girders. Only then will the equilibrium
or rather the horizontality of the longitudinal axis be stable in
response to randomtilting of the aerostat. Whenthe gas expands,
for examplewhenthe aerostat rises, or whenthe gas is compressed,
for examplewhen it descends_ the chains must be disengaged from the
lower girders in order that the envelope may ass_ne its normal shape
(Fig. I).

128. The chains in the middle section of the aerostat are
never coupled to the bottom girders_ and this is a very important
point, since it allows the gas to expand and contract slightly with-
out the necessity of releasing the other chains.

129- Fig. 6 showshow the upper longitudinal girders are
connected to the hoops and the envelope; the connection is hinged
and almost frictionless, so that the envelope is free to rotate
about the girder. A similar connection is used at the bottom. But
this joint is not gastight_ gas will leak through it. It is there-
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fore covered by a strip of thick_ soft_ impermeable material running

the length of the envelope. There will be four such strips_ cor-

responding to the number of longitudinal girders. Fig. 7 depicts

this seal in transverse section.

Stiffening

hoop ,

Longitudinal girder

Fig. 6

130. The design of the gondola will be clear from Figs. 1

and 8.

Fig. 7
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131. The tops of the chains, remaining inside the envelope,

may consist of one or several links; likewise the exterior part of

the chains which never goes inside the envelope. But the middle sec-

tion of the chains, which slides through the bottom girders, is made

up of numerous links. The design of this part of the chains is clear

from Fig. 9. Such a chain is capable of bending in all directions,

like a rope. A short link made of very strong material is inserted

between pairs of longer links. These short links also have a re-

cess into which fit special pins used to connect the links and the

envelope, except in the middle of the envelope where the chains are

always free. It is clear from this description that the chains will

never break as the gondola rocks and heaves. The free-sliding

chains may be replaced by wire ropes or by ordinary chains with

special provision for sealing off the gas.

1 I
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132. The black tube inside the envelope (Fig. l) is intended

for heating the light gas and varying the lift force acting on the

aerostat over a wide range. Increasing the temperature of the gas

and of the envelope not only has the effect of augmenting the lift

force, but is especially useful, and even imperative, in temperate

and cold latitudes where snow falls. Snow will melt and run off a

warm envelope, before it can add to the weight of the aerostat or

spoil the envelope by turning to ice under the influence of, say,

the sun's rays or a warm air current. Thick snow may accumulate on

certain portions of a cold envelope, however, and the horizontality

of the longitudinal axis may be affected; removing the snow by mechani-

cal means is no easy job.

133. The black tube _s heated by combustion products from

the airship engines. These products are allowed to escape into a

special temperature regulator (Fig. l, Fig. lO). There they en-

counter two openings partially covered by a slide valve, which is

adjustable manually (or automatically), so that one portion of the

hot gases is expelled through an exhaust pipe and carried off by the

slip stream, thereby averting any exposure of the passengers in the

forward part of the gondola to the fumes, while the other portion of

the gas is deflected through a special vertical branch into the black

tube inside the envelope, which it leaves in the rear part of the

envelope, without having polluted it.

Fig. 9

The distance between the envelope and the gondola varies, so

the exterior exhaust pipe must be somehow adapted to meet the situ-

ation.

134. Usually, both branches will be haLf-open and the light

gas will be heated to a certain temperature. But as the slide valve

I Z
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is displaced, the temperature of the gas will either rise or fall.

This provides a means of controlling the lift force acting on the

aerostat, and consequently a means of controlling its vertical motion.

135". When the aerostat is not in translational motion, the

horizontality of the longitudinal axis is insured by means of a very

slight displacement of the gondola relative to the envelope. This

displacement is effected by means of the diagonal ties visible in Fig.

I_ the displacement is accompanied by a deflection of the chains

through a very small angle (not greater than 5° to lO°).

Fig. I0

When the aerostat is in rapid horizontal motion, on the other

hand, there is another, though less direct method available -- this

involves the adjustment of the horizontal control surfaces which act

somewhat in the manner of a bird's tail. These surfaces_ which can

be rotated at will, are driven automatically by a small motor *.

136. Instruments indicating the pressure difference between

inside and outside the aerostat (manometers) must be placed in the

central lower section of the envelope. When the pressure is ab-

normally high_ the manometer will set off an alarm signal. The same
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thing happens when the pressure is exceptionally low, and thereby

threatens to disturb the horizontality of the longitudinal axis;

only then the alarm will ring at a different pitch. Final!y_ if

ever the pressure threatens the integrity of the envelope, a safety

valve in the stern end of the envelope will open automatically to

release the gas and prevent an accident.

137. A catwalk, not shown on the drawings, which serves to

provide access to the most important parts of the envelope, runs

around the envelope, along the four girders. Fig. I shows, to a

scale* of 1:500, a metal airship for 200 passengers, as long as a

large ocean-going steamship.

*In the present [Russian] edition, the scale of Fig. i is about

1:2300.
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VI. THE SHAPE OF A DIRIGIBLE

Sha_e of the envelope

138". The chains supporting the gondola are not usually

connected to the top of the envelope, as in our case (Fig. i).

I have been able to think of no improvement on this

system. Suppose, for instance, that the chains were attached to the

sides of the aerostat, as in almost all soft-envelope designs. In

the first place, the chains would be extremely long and consequently

produce additional resistance to the motion of the airship. In the

second place, a well inflated aerostat would be in no position to

increase its volume further, and might burst or lose a portion of

its gas if an attempt were made to do so. If it were not full,

then the horizontality of the longitudinal axis of the envelope

would not be stable: the aerostat would pitch or "peck," now at the

bow, now at the stern. In order to eliminate this "pecking," we

would have to have a ballonet, containing a variable amount of

air, inside the envelope. This ballonet would have to be huge in

order to satisfy the practical requirements relating to the ex-

pansion of the gas; but it would have a host of disadvantages,

which it would take much too long to go into here, and would be

simply infeasible in relation to a metal aerostat, since it would

cancel out the advantages of using metal for the envelope. Actually,

the ballonet could be made only of organic material, which is affect-

ed by diffusion. Consequently, after a certain time the hydrogen

would mix with the air filling the ballonet, and eventually we would

be harboring in the interior of the aerostat a "fused, loaded bomb"

capable of going off at any second and scattering the metal envelope

"to the four winds" in the ensuing explosion, i.e., we would make

it possible for air to get into the aerostat. And then what would

be the use of a metal envelope in the first place?

139. For the same reason (difficulty in varying the volume),

we cannot suspend the chains from the bottom of the envelope or the

bottom girders. There are still other reasons against attaching the

gondola in any other way than the one contemplated.

As for the rocking of the gondola as a result of this method

of suspension, this problem may be eliminated by the use of diagonal



88

transverse and longitudinal (Fig. i) braces (of variable length).

140. Suppose that the envelope is soft and shaped more or

less like a fish. We blow a certain amount of light gas into this

envelope and allow it to rise into the air. The shape of the gas

or the envelope will depend on many factors, for example:

a) on the extent to which the envelope is filled with gas,

or the gas pressure;

b) on the geometrical properties of the soft surface it-

self; thus, a highly inflated envelope may assume the shape of the

most varied solids of revolution; even irregular shapes of in-

finite variety are possible;

c) on the mass distribution of the envelope over its sur-

face, i.e., the envelope cannot be of constant thickness, and this

fact will have an effect on the envelope shape, particularly when

the envelope is not highly inflated;

d) on the total weight of the envelope in relation to the

lift force;

e) on the relative load;

f) on the distribution of the load ann the manner in which

it is secured.

Thus, depending on the distribution of the load, a soft en-

velope may assume one of three principal shapes shown in Fig. ll.

141. Let us narrow down the problem and return to a metal

aerostat conforming to a certain design.

In the folded form, it has the shape of an elongated

cylindrical box (Fig. 2, Fig. 5) with flat and likewise elongated
sides.

These sides form two equal planes that almost coincide, so

that the height of the cylinder, or the distance between these

planes, will be comparatively small. When the aerostat is in-

flated with gas, it assumes a certain shape, (Fig. 1). The middle

section of the aerostat remains essentially cylindrical, but the
sides become more or less rounded.

142. The actual shape of the envelope will be clear from

the longitudinal section (Fig. l) and the transverse sections

(Figures 1, 13, 14, 15, 16).

The longitudinal section varies, but it obviously depends

on us, i.e., on the geometrical properties of the flat sides of

the cylinder (Fig. 2, Fig. 5). The smooth curve bounding the

section may be expressed by some equation chosen as our needs

dictate, i.e., in designing the aerostat.

r
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We cannot give the transverse section of the envelope any

shape we please, however, though theoretically the shape depends on

the distribution of the mass of the envelope among its several

parts, on the manner in which the gondola is suspended, and on the

longitudinal tension of the corrugated surface of the aerostat.

Fig. ll.

Shape of Transverse Section of a Cylindrical Aerostat 1

I have used, in general, two methods to predict and clarify

1The equations in this chapter are applicable to a soft envelope

no less than to a metal envelope, and accordingly are of more

than narrow interest.
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aeronautical phenomena.

143. The first of these is a purely analytic approach; but

this has proved to be either very complicated or almost totally un-

suitable for determining the shape of an airship, so that I have

solved only certain special cases.

I. The H_drostatic Model

144". The second approach is an empirical one, involving

the use of simple analysis. For e_mple, if we make a small bag

the same shape as the aerostat, from some soft, impermeable and in-

elastic material, and immerse this bag in water, then the bag, placed

in a situation similar to that of an aerostat and full of air, will,

when loaded, assume the same form and_ in general, will have all

the properties typical of an aerostat containing a light gas and

immersed in air.

145. Consequently, using a clean water tank bounded by

flat glass walls, we shall be in a position to visualize (and in-

deed the shape of the aerostat, and to solve certain problems re-

lating to the stable horizontal direction of its longitudinal axis.

146. For those desirous of performing such experiments, I

have the following words of advice: use an ox bladder or a large,

even though very irregular, rubber bag with the openings stoppered;

but whichever you use, enclose it in a well-cut and carefully sewn

canvas or calico bag of the chosen shape. The impermeable rubber

bag is fitted inside this bag, within its more or less irregular
folds. It is also convenient somehow to attach a load to the

calico bag. A sheathing of lead plates, sewn to the calico but not

interconnected_ could also be attached to the bag in order to in-

crease its relative weight without affecting the flexibility of

the parts.
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2. Thread Model*

147". This immersion technique is particularly valuable in

solving the problem of the stable direction of the longitudinal

horizontal axis of the dirigible; it is not quite so convenient

for determining the shape of the transverse section, and there-

fore I have tried another, likewise empirical, approach. I took

a thread 88 cm long and attached 12 equal loads (q _ q2' q3'''''ql2 )1

at equal intervals along it (Fig. 12). This thread_ with or without

the loads, represents the ponderable or imponderable envelope of the

aerostat, or rather part of that envelope_ a strip bounded by two

planes normal to the longitudinal axis.

Fig. 12.
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I tied the ends of the thread and laid it in a circle on
a horizontal woodboard. I then attached thin threads to each of
the 12 loads (q , q , q , ..., q ) and suspendedlittle paper bags

i 2 3 12

(PI' P2' PS' "'" PIP) filled with different amounts of sand from

the free ends of the threads, in such a way that the weight of the
sand, together with the weight of the bag, was proportional to
the distance y between the point of attachment (q , q , q , ..o, q12)i 2 3
of the thin thread and the x-axis.

The pull of the paper bags represents the gas pressure inside
the aerostat_ which will always be normal to an element of its sur-
face; consequently, the threads attached to the bags were woundaround
light grooved wheels (k , k , k , ..., k ) with a hole in the center

, i 2 3 12
to permit them to be pinned to the woodboard. With the aid of these
pulleys, by moving the pins about which they freely rotate, it is
possible to arrange the threads attached to the paper in such a way

that they bisect the angles Of the thread polygon, i.e., so that

they are always normal to a smooth curve drawn through the ver-

tices of this polygon.

Actually, the pressure would have to be normal not to

elements of the curve, but to elements of the surface of the aero-

stat; however, in view of the great length of the aerostat and a

certain symmetry of the section, the result is almost the same.

148. The point where the threads are Joined at the end of

the main thread .....is nailed fast to the board, or we may suspend from

it a load P (representing the weight of that part of the gondola

corresponding to the width of the section in question) such that

the point becomes fixed. We now raise the board into a vertical

position, making sure however, that the x-axis remains horizontal,

so that the main circular thread (envelope) is elongated upwards,

and an angle, obtuse or acute, depending on the circumstances, is

formed at the lowest point. The result is that l) the threads

supporting the paper bags are no longer normal to the elements of

I -
the envelope , and . 2) the masses of the paper bags are no longer

proportional to the heights y or the distances between the loads

on the envelope (q , q , q , ..., q ) and the x-axis. These

l 2 3 12

i
I.e., the direction of the paper-bag threads is no longer along the

bisectors of the angles.
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differences must be corrected by moving the pulleys and changing the

paper-bag loads. The result is a new but smaller deflection, which

is corrected in the same manner, and so on. The whole Procedure

is actually quite simple.

I placed a sheet of white writing paper underneath the thread

representing the aerostat envelope, and on it traced the transverse

section. I then cut out this sheet with a pair of scissors, round-

ing off the angles due to the discontinuous nature of the loading

and exmmined it carefully.

149. In the different experiments the x-axis lay at dif-

ferent distances from the low-point of the cross section but

-in the first experiments passed right through that point, i.e., the

pressure difference at the low-point was assumed to be zero. The

ratio of envelope weight to load (or the loaded gondola) was also

varied in the different experiments.

In other experiments (F, G, H in Fig. 13), the load was

suspended from a chain, the other end of which was attached not

to the low-point, but to the diametrically opposite upper (not

the highest) point of the envelope; the lower parts of the chain,

which passed through the interior of the aerostat, was free to slide

over the bottom portion of the cross section.

2'---

Fig. 13.

These experiments were supplemented by fairly simple calcula-
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tions and reasoning. In fact_ these are the chief principles I re-

lied on in my further analysis of the shape of the transverse section

of the airship. A more complete study of the aerostat and its motion

will require not only greater ingenuity but also a direct investiga-

tion of an aerostat built on the basis of the first imperfect experi-

ments and theories_ and a comparison of the early inferences with the

new findings.

150. When a load is attached to the low-point of the cross

section and when the x-axis passes through that polnt_ i.e., when

the pressure difference at the low-point vanishes, the shape of the

cross section will more and more closely approximate a circle, as

the weight of the load decreases in proportion to the weight of the

envelope (Fig. 12, A, B, C); thus we see that at zero load the cross

section becomes a circle (D in Fig. 12); the theory is thereby con-

firmed; but in the case of an imponderable envelope, or when the load

is infinitely large compared to the weight of the envelope, the

cross section is not reduced to two parallel threads_ but retains

an appreciable width (A in Fig. 13).

151. When the x-axis lies below the low-point of the cross

section, i.e., when the pressure difference at the low-point is

greater than zero, but the method used to attach the load is the

same, then the cross section will be the closer to a circle the

lower the x-axis, i.e._ the greater the pressure difference (E in

Fig. 13). In this experiment the envelope was imponderable, i.e.,

the 12 loads were not attached to the main thread; the pressure at

the low-point was expressed by a gas column b = 2/3 D (Fig. 12).

But in the first four experiments the pressure b = O; while

the ratio of load to envelope weight varies progressively, thus:

i, 1/2, 1/3, and 0, i.e._ in the first case the load was equal to

the weight of the envelope, in the second case it amounted to half

the envelope weight, and so on.

152. Clearly, when the relative decrease in load goes hand

in hand with a constant increase in the pressure at the low-point of

the cross section, the latter will approximate even more rapidly the

shape of a circle.

This method, as well as the usual method of fastening the load

to the sides of the envelope with strings (Krebs and Renard, Dupuy

de !'Homme) has the disadvantage that the cross section contracts

sharply in the horizontal direction when the cross-sectional area

or the volume of the aerostat is reduced by a comparatively insig-

nificant amount, and expands proportionately in the vertical direc-

tion_ so that the area remains almost the same_ the corrugations of

the envelope will be heavily shortened, and the envelope itself
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severely bent, and, in general, the variation in volume will be en-

tirely out of proportion to the flexure of the envelope and the

shortening of the corrugations.

I can say this after long reflection on the subject and after

performing calculations which I shall not repeat here. There are a

few other disadvantages: for example, if the amount of gas inside

the aerostat is small, then the direction of the longitudinal axis

will be highly unstable_ because the pressure difference at the low-

point will be much less than zero, and on the longitudinal axis tilts

the aerostat will tend strongly to expand at one end and contract at

the other; this will not only drastically disturb the longitudinal

axis_ but may produce irregular folds and the subsequent destruction
of the aerostat.

153. When the chain is fastened to the diametrically opposite

point, the shape of the cross section will depend on the pressure

difference at the low-point, or on th@ relative volume of the gas in-

side the aerostat (F, G, H in Fig. 13).

The pressure at the low-point will vary from infinity to zero

and less, and the relative volume or the cross-sectional area will

vary from I to 1/2. The higher the chain rises, the greater the

volume and the greater the pressure; the further the chain falls,

the smaller the volume and the lower the pressure. In the three

experiments depicted, the envelope was assumed to be imponderable,

i.e., loads were not attached to the thread, and the pressure at the

low-point_ ascertained by simple calculation_ was found to be b = D,

3/4 D, and 1/3 D, respectively.

As we shall see r for this cross section, when the envelope is

weighted, the pressure is lower.

154. This method of fastening the chains is preferable for

a variety of reasons:

i) the cross section is forced inward in the vertical direc-

tion, so that the height of the aerostat is almost 1-1/2 times less

than when the chains are attached in the usual manner; this makes it

easier to seek protection from opposing air currents by descending

closer to the surface or sheltering behind woods;

2) the bulk of the chain is concealed inside the envelope_

and only a short length projects below the bottom of the aerostat;

this minimizes the drag;

3) the general shape of the cross section, particularly at

the bottom_ is close to a circle, and coincides quite accurately

with the cycloidal curve (Fig. 14) obtained by a circle rolling
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along a straight line_ the curve being traced by a point rigidly

connected to the circle but lying outside it; the mathematical

identity is not complete, but the close similarity is strikingly

obvious, even when the cross section is considered imponderable; the

similarity becomes even more pronounced where the usual fabric en-

velope is concerned; the advantage of this shape will become clear

in the discussion; for the time being I shall merely point out that

the bending of the envelope and the stretching of the corrugations

are very slight and correspond to the change in cross-sectional

area;

4) despite an appreciable change (almost double) in this

area or the volume of the aerostat, the stable direction of the

longitudinal axis_ as demonstrated by experiments based on the im-

mersion method_ is always retained_ provided the chains are not free

to slide through the bottom of the cross section when the aerostat is

tilted, and provided the aerostat itself is not too elongated.

_ .......... Ruler

/2 \%

/j/ %%%_k

Fig. 14

155. The equation of the cycloidal curve with respect to an

x-axis, coinciding (Fig. 14) with the trace of the center of a

circle rolling along a straightedge, and with respect to a y-axis

perpendicular to the x-axis and passing through the point where that

axis intersects the curve itself, will be
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x=rorcsin< +

where r is the radius of the circle, and R is the distance of the

point tracing out the curve from the centeT-of the circle

3. Analytic Determination of the Shape of the Cross Section

156. Assuming that the envelope is reasonably flexible (rea-

sonably soft) and has a constant width and that the density of the

material is constant_ I shall now attempt to determine the shape of

the cross section analytically.

, :'\ ;
I i

X \_I I \
2\

k\ / \ /

0

Y

' /i_'1 I

;._z J i. z

Fig. 15

157. To begin with, we are obliged to make a simplifying

assumption: namely_ that the length of the aerostat is very great
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relative to its width or height or, more accurately, that the envelope

is cylindrical in form while the shape of the normal cross section

(Fig. 15) is unknown.

158. The tensile forces acting at the circumference of the

envelope over unit width, will be designated t and tz, the componentsY

of force in the z-direction and in the y-direction (Fig. 15).

These forces are derived from the gas pressure and the weight

of the envelope. The weight of units of the length s of the envelope

around the circumference of the cross section will be denoted by q.

By the gas pressure, we mean the difference between the air

pressure at some point A and the pressure exerted by the gas inside

the envelope at the same point.

159. Assuming that at the bottom of the envelope there is a

tube (appendix)* of length Y3' full of gas and in communication with

the outside air, so that the gas pressure at the bottom of the tube

is equal to the external air pressure_ we find that the pressure dif-

ference of the gases at a point (z, y) is ay, where a is the differ-

ence between the densities of the air and the light gas. We may

write

a = 7air - Fgas.

160. On the basis of the foregoing, we derive:

dt = - aydz - qds,
Y

*Actually, there need be no such tube in practice. My object is

solely to find a convenient means of expressing the pressure at the

low-point.
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161. • dz

and

162. dt = aydy.
z

163. And since

t
y dy

t z dz _

the n

dy
t = -- • t .
Y dz z

164. On differentiating this equation, we obtain

dy d2Y
= __ . -- . dz.

dty dz dtz + tz dz 2

from this equation by means
165. Eliminating dty, dt z, and t z

of the preceding equations (160), (162), and (163), we find

dy d2y

- aydz - qds = a • d_ " ydy + dz2- • dz
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166. On evaluating the integral in this equation, and di-

viding by dz, we obtain

ds ay +
- ayq • d-_ = dz 2 '

where C 1 is a constant.

167. This equation can be made into a first-order equation

by putting

dy i

dz

whereupon

ds=Jl+y
12

dz

and

d_ d i i .

dz 2 dz dz dy dy dz dy

168. Using these formulas to substitute for the quantities

in equation (166), we obtain

- ayq I+ y = +
y___

y2+C "dy " Y _

i
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which is a first-order, but nonlinear equation.

169. From this we find

-_ + [ay (I + y + q + y dy O.

170. Here the variables are not separated, but simplification

is possible: putting I + y12 u2 td= , we obtain y y = u du; hence,

dividing by u, we get

• y + C 1 du + (ayu + q) dy = O.

171.. Here the integrability condition is fulfilled, so that

(2y2+Ci) du + 1_ (ayu+ q - _ aydu) du = (_-. y2 + C I _ u+ cLv = C2.

Here C2 is a second constant•

172. From this last equation we find
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U =

C2 - qy

---a• y2+ C I
2

173. But this is not all_ since_ dropping the notation of
(167) and (170), we get

dy

dz

j a + )2(c2 _ _)2 _<_ p el

a__ . y2+ C
2 i

or

dz

+ CIF

I,

174. For the integration we find

dz =

(%-_ + cl) _y

(c2_ _)2 _ _. y2 + CI) 2
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For each y formula (173) yields two derivatives; these are

equal but have different signs. Clearly then, the curve is symmetrical
about some axis parallel to the ordinate axis.

175. Assuming d_y = 0 in equation (173) and applying this equa-
dz

tion to the aerostat in question (Fig. i), we find that Ymin = Y3 and

Ymax = Y3 + h, where Y3 is the height of the appendix and h is the

height of the envelope.

176. This enables us to find the constants C I and C2. From

(173) we obtain the four pairs of equations needed to determine the
two constants:

_ a . _ + CI'177" C2 - qYmin - 2 min

a 2

C2 - qy = -- • y - C .
max 2 max i

a 2

178. C2 - qYmin : 2- Ymin - Cl'

a 3= -- " + CC2 - qy
max 2 max I

= a . y2 _ CI _179. C2 - qYmin - _" min

_ a 2
C2 - qYmax = 2 Ymax - C1
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a 218o. c -
2 qYmin = 2- Ymin + CI'

a 2

From the first pair of equations we obtain

: +_ q (y -y ).
181. - Cl _ ax mi 2 max min

182. C2 = - -4 ax -Ymi + 2- (Ymax + Ymin )'

These equations_ as we shall see, apply to an ordinary

ponderable envelope, or, in general, whenever the light gas or fluid

inside the envelope tends, as it were, in a direction opposite to

that of gravity. Such is the case in relation to the aerostat.

From the second pair of equations we have

a q

aQ n)184. C2 : _ ax -4i + 2- (Ymax + Ymin )"

J
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These equations apply to negative ponderability or, in general_

whenever the apparent tendency of the fluid inside the envelope is to

move in the direction of gravity. This is the case when We determine

the shape of a cylindrical bag filled with a fluid or gas heavier

than the surrounding medium, for example, air.

It is not possible to determine the constants from the third

and fourth pairs of equations, but we then get

q Ymax -- Ymin q h
_ A V

185. Ymin a 2 , or _3 = a 2 '

q Ym " Ymln q h
186. Ymin a 2 , or Y3 a 2

dh

187. Suppose that when the derivative (_) is equal to in-

finity, y - Y72 = hl (Fig. 12); thenT-rom equation (173) we find:

hl÷ Y3= •

Clearly then, C I must be negative.

It is also apparent, on the basis of equations (181) and (183),

that h I will be smaller for positive than for negative ponderability

(Fig. 15).
Likewise, it is not difficult to show that in the case of an

infinitely large pressure p at the low-point of the envelope (Y3 = _)

h

h I = -_, for both in positive and negative ponderability, which serves
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as a check on the formulas.

188. By eliminating C 1 from this last equation_ we find:

in the case of positive ponderability (aerostat):

J q (Ymax Ymin )hl + Ymin = i/2 (4ax + 4in ) -
a

and in the case of negative ponderability

q (Ymax - Ymin)

a

189. When the envelope is imponderable, i.e., q = O_ we have

hl + Ymin = Jl/2 (4ax + y2mln")"

The greater the value of Y3' the less h compared to h] so

that when Y3 = 0 I

IiI'
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hi = h h _.

190. The usual formala enables us to find the radius of curva-

ture of the unknown curve. Using equations (170) and (172), we find

• c2 _ _

"-dz: • _ + c_.J

19 I. Now

ds i +

dz \ dz J a
-- • _+C
2 I

192. From equations (166) : we obtain

d2y

dz2

q • dz + aYE k. dz j

__a 2+c
2 i
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193. Finally, from this and the preceding equations, we find

the radius of curvature p:

ds _3
qYz 

d%
7

4- (C 2 _ oEf) 2

a

194. We recall that q is the weight of unit length of the

envelope for unit width; a is the difference between the densities of

the internal and external fluids_ equal to 7air - 7gas; ay3 expresses

the pressure at the low-point of the envelope; ay is the pressure at

the level y; C 1 and C2 are constants determined from equations (181)

and (182) in the case of ordinary positive ponderability_ and from

equations (183) and (184) in the case of negative ponderability.

195. Consider the circular cross section of a cylindrical

aerostat of height h*. The buoyancy of this circular cylinder will be

2
• a. Let I/n be the part of this buoyancy corresponding to the

4

weight of the envelope of the (open, of course) cylinder. We then

have

1 wh 2
.... a = _hq,
n 4

and hence

*The width of the cylinder is assumed to be equal to unity.
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ah

q= _n"

196. My object is to introduce a rough approximation of the

fact that the weight of the envelope corresponds to a certain fraction

(l/n) of the buoyancy of the aerostat.

On eliminating q from the constants C l and C2 and from equation

(193), and on eliminating the constants themselves from the last

equation and replacing the expressions Ymax and Ymin by their numerical

values (Ymax = h + Y3 and Ymin = Y3 ) (Fig. 15), we obtain for the

aerostat (positive ponderability)*:

i Y'Y 2
h(l+ h "2_ + 'n._ )

y 2 l 2y3 2# i) Y 2y3 l Y "Y3)2_ (_f) --(L+--+ - 4- (l+ +
n n h h 2 2n h h 2n nh

197. Likewise, for a gas heavier than air, or for a bag con-

taining a liquid, say water, we find

2Y3 l Y - Y3)2
h (I+ "-h--+ 2n nh

2 y)2 1 2Y3+
i" " ([ - i (L+ %-

2Y3 I) y 2Y 3 i Y - Y3)--+ + 4--- (l+ --+
h2 2n h h 2n nh

*l.e., ordinary gravity.
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198. Clearly, from these equations, the curve has a very
complex form, and its shape will depend on the relative massiveness

I
(-_) of the envelope and on the relative pressure Y3/h at the low-

point of the envelope. If these quantities are constants, then the
curves will all be similar. Of course, the shape of the curve will
also depend on the direction of gravity with respect to the direction
of the gas pressure_ as will be obvious from the differences between
the last two equations.

199. When-_ = _, both equations state that the radius of
h

curvature is constant and equ_l to h/2 (half the envelope height),
i.e., the curve reduces to a circle.

200. According to the first equation_ for an aerostat such
that n = I, i.e., whenthe weight of the envelope is equal to the
buoyancy of the gas_ the curve will also reduce to a circle for any
pressure Y3 at the low-point_ since the first equation gives p =

= 1/2 h.
Wearrive at the sameconclusion whenwe find the derivatives_

etc. from the equation of a circle relative to its tangent_ and sub-
stitute in equation (166). Wefind that this equation is satisfied;
therefore_ whenn = I and the ponderability is positive_ the curve
will be a circle.

Let us now put n = 2 in equation (196) and give the ratio
y3/h thevalues: o; l/8s o.lk; O.lSs l/S; l/4s 1/2; l> s_ccessively.

We then obtain the following formulas for computing the radii

of curvature of the curves bounding the cross section of the aero-

stat. For the sake of brevity, in these formulas I have introduced

y - y

the abbreviated notation 3 = k_ but since h_ or the envelope
h

height, has been made equal to unity, we have y - Y5 = k.

For different values of k_ we obtain different radii; these

are tabulated below:



Y3 (3 + 2k) 2

16k + 6
n=2

III

k

P 0 I 0.2
I.500 O.714

201.
Y3 I

h 8'
(2 + k)2

4k (4+ k) + 4' n=2

k

P

0

i.000

202. z3 (2.0(:; + k)2
= O.l_-; _= _

4k (4. m + k) + 4.3].;
n=2

klo lo to tlo
p 0.984 o.657 o.484 0.378

203.
p

(2.1 + k) 2

4k (4.2 + k) + 4.62
n=2
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kl°I°2 If°
p 0.955 0.650 0.482 0.378

There is nothing easier than to construct very accurate curves

from even these few radii; but let us proceed.

_ (2.3+ k)2
204. = --; p = ; n = 2

h 5 4k (4.6 + k) + 5.98

kloio2 llo
p 0.885 0.636 0.485 0.384

205.
h

1 (5 + 2k)2
= ; n=2

_; P 16k (5+ k) +30

If°
p 0.833 0.617 O. 486 0.389

206.
Y3 I (7 + 2k) 2
_= _; p= ; n= 2

h 2 16k (7 + k) + 70

I
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io2 llo
p o.7oo o.589 o.492 o.4o4

207. _" I; p (ii + 2k) 2= = ; n=2

h 16k (ll + k) + 198

k

P

0

0.611

208. Using these data, we are able to construct the curves

arrived at earlier by experimental means (Fig. 16).

An inspection of these curves shows that they all resemble

elongated cycloids (Fig. 15). We also see that the pressure Y3/h at

the low-point cannot be less than 0.237, for otherwise the curve would

not be closed, i.e., it would not cut the ordinate axis. Clearly,

moreover, the curve will round out more and more as the pressure at

the low-point rises, but the double (or full) width will nevertheless

appreciably exceed the height.

209. If we construct curves on the basis of formula (197),

we see that the bag containing some gas or fluid heavier than air will

have the same curves in its cross section, except that they will be

turned upside down. Note likewise that the curves are less elongated

in the horizontal direction than the curves of the aerostat, and re-

quire an incomparably greater pressure ys/h at the low-point.

210. The curves for a weightless envelope occupy a middle

position; their properties are intermediate_ i.e., they are charac-

terized by intermediate elongation in the horizontal direction and

require an intermediate pressure at the low-point of the envelope.
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211. The dependence of the shape of the aerostat envelope on

the relative ponderabilitY I/h of the envelope, given the same pres-

sure at the low-point, is also readily seen. For example, if y3/h =

= 1/2, and n is successively I, 2, and _ (or if the ponderability I/n

of the envelope is respectively I; 1/2, or 0), we can construct three

curves on the basis of equation (196). The first curve will be a

circle and thenj as _n decreases, the curve will become increasingly

elongated in the horizontal direction.

Fig. 16

212. For the construction of weightless envelopes, we can now

derive some extremely simple formulas by putting n = _ in equations

(196 ) or (197).
We then obtain

C
2

P=_.

IIi
i
l
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If, on the other hand, we put q = 0 in equations (183) and

(184), we obtain

a 2 y2
--CI = -4 [Ymax + m:n"]"

a r_ 2_ - y ]"

C2 4 max min

213. Accordingly:

h

P 4

Ymax + Ymin

Y

or

h

P= 4

h + 2y 3

Y

214. Using equations (196) and (197), if n = =, we arrive at

exactly the same result:

(l+ 2Y--3)2
h

273
Y(I+ )4[ T

h

4

h + 2y 3

Y
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215. Clearly, from the last formulas, as the ordinate y in-
creases the radius of curvature continuously decreases. Wheny = y3_
p will be a maximum;then

h(h 0p = -- --+ .

max 2 2Y 3

When y = h + %' we obtain the maximum curvature, namely:

%in = -4 + -- "
h+Y 3

The ratio

Pmax h
--= --+ I.

Pmin Y3

216. If, moreover, Y3 = 0 (i.e., the pressure is zero at the

low-point), then the radius of curvature p will range from infinity

to h14.

217 . As Y3 increases, or as the pressure at the low-point in-

creases, the radius p will decrease at the bottom and increase at the

top. When Y3 is infinitely great, of course, the curve must become

a circle, and, in fact, we find from formula (213) that p = 1/2 h,

i.e., we obtain a constant radius equal to half the height h of the

envelope.

II
i
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2_. Fo_ulas (196) and (197) are entirely adequate for ve_

acc_ate traci_ of the cross section of the aerostat and for the ex-

perimental investigation of the curves in all respects and details.

_vertheless, I shall also present some theoretical data for

the s_e p_pose. _e derivative _ is expressed by fo_ula

(I_); for the dete_ination of the curve we _ve fo_ula (174).

219. Below I offer the second derivative:

2
dy

dz 2

(C2 - qy) lay (C2 - qy) + q (-_ y + C 1

(a )3-_y2+ cI

220. Further, I shall give the differential of the arc ds:

Jds i +

dy

or, using equation (173), we have

ds =

(c2 - qy) dy
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221. Finally, the differential of the cross-sectional area

is (y - y_) dz; consequently:

(y - y3) d_ =

(-_# +_l)(_-y3)dy

222. The equations of this chapter may also be applied, with

other constants, to a different method of suspending the gondola;

they may also be used to determine the shape of the cross section of

a variably inflated aerostat, when the bottom of the envelope forms

a re-entrant or salient angle.
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VII. THE CORRUGATED METAL SKIN OF THE AEROSTAT.

STRETCHING AND BENDING OF THE SURFACE 1

Surface of Revolution Transformed into a Double Plane

In addition to the one described in Chapter V, there is yet an-

other type of corrugated aerostat envelope. Accordingly, I shall

proceed to derive certain formulas relating to the corrugated surface

of an aerostat needed for constructing this surface in accordance with

some specific system.

223. First let us suppose that the aerostat has the shape of

the surface obtained by rotating some smooth curve about its chord

(Fig. 17).

Fig. 17.

1A portion of this chapter is taken from my book Aerostat metal-

licheskiy, upravlyaemyy [The Maneuverable Metal Aerostat] (1892,
1893).
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We can now transform this surface in such a manner as to obtain
the desired properties (Chapter V).

To do this, we divide the surface into a large numberof parts
by meansof planes perpendicular to its longitudinal axis (Fig. 18).
Each part may be regarded, with no great error, as the lateral sur-

face of a truncated cone; the ends of the aerostat however, re-

present the lateral surfaces of complete cones.

Fig. 18.

224. Conical surfaces have the property that they can be

folded flat without wrinkling. We now flatten all the cones in the

same order in which they were originally arranged and attempt to lay

them out so that there are no gaps between neighboring cones yet no

cone overlaps its neighbor. This we can never achieve (Fig. 19).

Along the center-line of the drawing, the folded conical surfaces

do not meet; the closer we get to the edges of the figure and further

they move apart; these surfaces, of course, are understood to be

double surfaces.

Had the edges of the gaps in the last drawing been parallel,

it would have been possible to bring the surfaces closer together

and make them continuous.

225. Now suppose that the strips (Fig. 19) are extremely

narrow and that the gaps between the strips are likewise narrow.

We now bend each strip to form a trough or ridge. The troughs

should be deeper, and the ridges higher, along the longitudinal axis

of the drawing, growing shallower or lower as we proceed further

out from the center-line. Then the middle portions of the strips

i ,

f
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will undergo a transverse contraction, and the edges of the gaps will

be equidistant. Thus, we shall be in a position to make those edges

meet. The end cones (Fig. 19) remain unchanged.

F_g. 19.

226. Thus, the aerostat is first cut up into narrow strips,

these strips are folded flat and given a trough-like shape, and,

finally, the edges are brought together, i.e., those points on the

surface of the aerostat which were previously in contact are re-

matched.

Fig. 20.

As a result, we have an aerostat (Fig. 20) which is cleverly

and continuously folded flat and covered with transverse corruga-

tions. These corrugations are the deeper the closer they are to the
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center-line of the folded metal bag; only the edges of the latter
and the hollow end cones are perfectly flat. Whenthe bag is in-
flated, these corrugations are more or less smoothedout, i.e., the
depth of the corrugations is reduced. But it will not be possible
to inflate the aerostat completely or to smooth out the corrugations
completely without breaking the skin. The waves in the surface must
therefore be steeper, so that they will not be completely smoothed
out whenthe envelope is fully inflated; in the first place the
extra fullness of the waves is no disadvantage; secondly, it enables
the surface freely to take on the shape corresponding to the cross
section depicted in Fig 1 and to vary that shape appreciably.

Fig. 21.

227. If we assumethat the waves in the envelope are suf-
ficiently shallow, and that the aerostat itself is sufficiently
large and madeof sufficiently thin and elastic material, then the

metal bag thus obtained will have the properties referred to above.

To these properties we may add another, viz. a special elasticity,

so that the aerostat "springs back," despite considerable changes

in shape or volume, without forming irregular and unexpected folds

and offers adequate resistance to any forces tending to make it

collapse.

228. Even though the above concept of the design of a folding

metal aerostat is highly useful for clarifying its capacity to change

shape in response to the forces acting on it, in practice the aero-

stat will probably have to be made of panels, so I shall now suggest

an alternative method of plane construction.

Suppose we take two adjacent folded conical surfaces and

divide them into panels in the manner shown in Fig. 21. If we pass
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each such panel through a pair of toothed rollers, i.e., through a

pair of cylinders covered with corrugations the crests of which are

aligned parallel to the axes of the cylinders, then the length of

the panels will be reduced [Fig. 22]*.

By employing rollers with corrugations of different depths

and also by moving the rollers slightly apart, we can shorten the

panels by different amounts without varying the number of corruga-

tions impressed on all panels of the same size.

Fig. 22.

229. The panels can also be reduced in size in such a way

that the edges of the gaps between them are parallel when the panels

are rearranged in their former positions (Fig. 21); this, of

course, requires that the panels be given corrugations that are

parallel to the strip, and the steeper the closer they come to the

*Square brackets are always reserved for additions made by the
editor
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center-line of the folded aerostat.
It then remains to bring together and rejoin all those points

on the aerostat that were originally in contact.
The shape, of course, will be e_ctly the same(Fig. 20) as

that described in connection with the other method of forming a
folded metal bag.

230. Not all the rings (or strips) need be corrugated; it
would be sufficient to corrugate alternate rings.

Geometrical Calculations

Now let us proceed to the calculations. I shall first work

through the purely geometrical calculations, later the mechanical

calculations as well. To start with, we need to know the radii and

angles of the cones forming the gas envelope, as well as the gaps

between adjacent strips (Fig. 19); once these gaps are known, it is

not difficult to determine the extent to which they must be reduced

in order for the strips to fit side by side in a single plane, thus

forming a closed envelope.

11

_g. 23.

.

• i
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Fig. 24.

231. Suppose that the equation of the curve (Fig. 17)

generating the surface of the aerostat upon rotation about its chord

is y = F(x); here we take the chord as the _ axis, and its center

as the origin of the rectangular coordinates. Then, from Fig. 23,

where one of the truncated cones is shown in its natural i.e., unfolded

form, and where r is the tangent to the curve, or the generatrix of

the complete cone, h is the height of the cone, and y is the

radius of its base, we find

2 2 2
dy = y and r = h + y ;

232. dx h

hence

233.

1
2 2
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We have determined the generatrix r of the complete cone,

or the radius of the folded truncated cone, which looks like part

of a ring (Fig. 24). From the drawing, we now find the length of

the arc ML:

234. ML = __/=SZ
4 2

Consequently, writing 360 ° as 2w, we have the following ex-

pression for the angle _ subtended by the arc ML:

I

235. _ _ __X
i r 2r

On the basis of this last equation and equation (233), we

arrive at

236.

1
2 --_

o! = - 1 + dx j
1 2

s

We now have to find the size of the edge gap (i.e., at its

widest point for a given pair of folded strips) between two cones

folded flat (Fig. 24), which we denote as A .
i

Having examined Fig. 24, where r is the outside radius

of one strip, (r + dr) the outside radius of the adjacent strip

and ds the width of the strip,

i

L ¸
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1

237. ds = [i + _dy J _ dx,

we can formulate the following equation:

238. (r+dr)=O0 cos(C_ -dC_ ) + r cos(dC_ ) + A + ds =

1 1 1 1 1

= O0 cos _ + r + A + ds.

i i i

239. But

00 = (r + dr) - r - ds = dr - ds.

I

240. Therefore:

A =___ ds) . (i - cos _ _x.
I dx i

Here the angle _ is found from formula (236); but the angle

1

may be less than _ , and we then find not the widest gap A at the
1 1

edge of the folded strip, but other lesser values A lying closer to

the center C (Fig. 24); thus, formula (240) holds true in general;

we therefore have
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241. A = _
ds> (i - cos _) dx;
dx

here the angle _ is not entirely arbitrary, but must satisfy the

condition

242,

1

2 ---

2

i.e., it must be less than _ * (236).
1

243. Once A and A are known, it is readily seen that the

1

shortening of an individual panel dA forming an element of the

strip (just as the latter in its turn forms an element of the

aerostat) is: dA = A - A, i.e., it is equal to the greatest gap
1

between the given pair of strips minus the gap corresponding to the

position of the given panel.

244. If the equation of the generatrix (Fig. 17) of the gas

envelope is known, then, however complicated its shape may be, we are

in a position to find out, from the above equations, the radii r

of the strips (233), their length (234), their angles (236), the

gaps A and A (241) and (240), and the shortening dA of the panels that

1

form second-order elements of the aerostat.

245. We see from equation (241) that, for a particular strip,

or for a constant value of the coordinate x, the gap A is pro-

*Not greater than _ •

1
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portional to 1 - cos _, but we have approximately i - cos _ = --,
2

i.e., the gap is proportional to the square of the angle _ or to the
distance from the center point L along the arc MN (Fig. 24), regard-

less of the shape of the generatrix or the form of its equation (231).

246. The equations we derived, which contain the radius r

(233) and the arc s, are quite complicated. But for our initial

purposes they can be simplified. The corrugations of the envelope

surface do not require to be calculated with special accuracy, since

they are made with a safe margin of tensile strength; thus the

simplified expressions will also be suitable for designing the

envelope.
We have approximately [Fig. 23 and formula (233)], provided the

aerostat is fairly elongated:

d__x.
247. r = h = y " dy '

248. ds
-- i.

dx

From (247), on differentiating, we find

249.
2

dr I - y d_-_) 2 _ "dx -

Hence,

250.
2

dx dx dx 2
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Moreover, from (236) and (245) we get, approximately:

dy
251. _ = -_- • -- ,

i dx

252. I - cos

i

_ u

2 8 dx

Now, from (240) we find

253. A
1

_w2 d2y

=--" Y " 2 dx .

8 dx

(i x2)254 . If, for instance, y = F(x) = y -- , i.e., if

I xI

the aerostat is formed by rotating the arc of a parabola about a

chord 2x perpendicular to the axis of the parabola, then we obtain
i

the following approximation for the edge gap A :
i

22 2

A - - -{ dx=-" • -- " dx.
I 4x 2 x 4 x2

Yli I I

Here, as in the preceding equation, 2x is the length of the
1
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envelope, and 2y
I

diameter.

is the height of the envelope, or its greatest

255. The formula clearly shows that A is proportional to 2y,
1

i.e., to the diameter of the cross section of the envelope and to the

width dx or ds of the strip for a given aerostat. Near the ends

of the envelope, the gap between the strips will be so small that at

the ends of the envelope the corrugations can be safely neglected and
these areas can be made smooth and conical.

256. It is clear from the same formula that for constant

x/x and dx but envelopes with different aspect ratios x /y the

1 1 1

quantity A will be inversely proportional to the square of the aspect
1

ratio. For example, if the aspect ratio of the envelope were tripled,

while retaining the same equation of the curve_ then the gaps be-

tween strips A would be reduced 9 times.
1

257. The last formula also gives us the greatest relative

shortening A /dx of the panel (Fig. 21, 24). Putting the envelope

1

aspect ratio x /y equal to 7 in this formula, and assigning to

1 1

x/x successive values of 0, I/2, 3/4, and l_ for the relative

1

shortening A /dx our calculations give: ]/20, L/26, 1/46_ 1/85, and O.
1

258. When the envelope has the shape of an ellipsoid of

revolution, then

t x2!
y-- F(x)-- y

1 x 2
1

and
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V
A_!l= I 2 2 2Y__. __

dx _l X2) ---" 2--- 8 x y2

This makes it clear that in the case of an ellipsoid, the value
of A1/dx for the edge gap, or the greatest shortening of the panel,

will increlase rapidly toward the ends of the envelope. Again as-

sumlng x /y = 7, and _/x equal successively to: O, 1/5, _/5, 3/5,
1 1 1

4/5, we find the corrdsponding values for A /dx: 1/40, 1/38, 1/34,

I/_6,_ ]#14. 1

259. If we assume

3

2 _
y = F(x) = y <i - x_)

where the exponent 3/4 is the arithmetic mean of the exponents

[degrees] of the equations of the two preceding curves, we find:

2
A__I=3_2 Yl
dx 2

32 x
1

2
X

2
1

x2

1
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Again putting x /y = 7 and _/x equal successively to:

1 1 1

O, 1/5, 2/5, 3/5, 4/5, we find for A /dx the values: 1/26, 1/26,

I

1/25.5, and 1/22, respectively.

Consequently, we can also get envelopes shaped so that the

edge gap is approximately the same from the nose to the tail of the

aerostat.

260. For an elongated cosinusoid

y = F(x) = y cos _J
1 1

and

-:-< • )co 2
dx 32 xI _ 2x I 32 xI

This means that the edge gap will be reduced at an extremely

rapid pace toward the ends of the envelope and, in fact, will be

proportional to the square of the diameter 2y of the envelope cross

section. This gives a very smooth, sharply tapered, and well stream-

1

lined shape .

261. This last formula may be written as:

i

I have designed high-speed boats with just this shape.
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2 2

Hence it is clear as we also found in the case of other sur-

faces, that the value of A is inversely proportional to the square
1

of the envelope aspect ratio.

The greatest edge gap is obtained from this last equation by

A_m = _4m f __Yl_2 When Xl
7,

substituting y = Yl" We thus find _ _, •
dx 32 xI Yl

A 1
we have - 0.06212, or about 1/16.3".

dx

Actually, in the middle of the envelope, the gap will be far

greater, compared to the other shapes, but in contrast it will be

reduced rapidly toward the ends of the envelope.

A 1
262. We can also make _ = F(y), i.e., make the relative

dx

shortening of the center panel or the edge gap chosen functions of

the coordinate y.

We then obtain the differential equation (cf. (253))

w2 d2y

---. y F(y)
8 dx_

or

"i/16.1, to be more precise.

IIi
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_2y -8 F(y)

dx 2 _2 " y

Hence

dy

--- • dy
C _2 y

where C is a constant•

263. If, for example, F(y) = Ky_ where k

multiplier, then

is some constant

dy=y

and

dy -w2 _C 16
x = = 8k-- - _-_My + ,

c - i_6_y Cl
w2

where C is also a constant.

I

This is, of course, the equation of a parabola, as we have seen
earlier.
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Mechanical Calculations

264. Let us now consider the mechanical aspects of the

problem of designing the metal envelope of an aerostat.

We have learned that each panel must be shortened by a certain

amount (A - A), and that this can be done by corrugating the sur-

1

face in the machine illustrated in Fig. 22. Then, when arranged in

the proper order, correctly aligned and welded together, the panels

will form a flat bag which, on being inflated will assume a stream-
lined shape (like that of a fish or a spindle_ with no irregular or

unexpected wrinkles likely to impair its integrity.

But the panels could be shortened by means of either shallow

or deep folds or corrugations (Fig. 25). The question is what size

should these corrugations be?

It is imperative that the corrugations, the crests of which

define the cross section of the aerostat, be free to bend as the

aerostat passes from the flat to the round inflated form, with no

danger of fracturing or cracking or the formation of irregular
folds.

This condition calls for the shallowest possible corrugations;

but very shallow corrugations would not be of much use for the

simple reason that, as the aerostat is inflated and the corrugations

flatten out (i.e., as their depth is reduced), they must not only not

crack, but must be elastic enough to spring back into their original

form when the aerostat is deflated.

This second condition calls not only for highly elastic

material but also for the deepest possible corrugations.

265. Thus, we can now proceed to determine the maximum

dimensions of the corrugations, for the time being solely from the

standpoint of safe transverse bending of the aerostat surface.

In order that the bending of the corrugated peripheral sur-

face of the cross section of the aerostat may be viewed as that of

a massive plate of thickness 2h, smaller second-order corrugations

will have to be formed in the ordinary [or first-order] corrugations

whenever the size of these corrugations is much greater than the

thickness of the sheet metal of which the panel is made, and smalls

or third-order corrugations may have to be formed in these second-

order corrugations_ and so on. It is my belief that in practice

we need not go beyond the use of ordinary first-order corrugations

in normal aerostat design, or in the worst case second-order corruga-

tions (Fig. 26). This task can be handled with machines similar to
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Fig. 25. Fig. 26.

the one illustrated in Fig. 22. Suppose that a massive surface of

thickness 2h is bent into a circle of length C; then the convex

side of the resulting cylinder will be stretched by an amount dC,

while the concave side will be shortened by the same amount; clearly,

the ratio dC/C must not exceed the ratio K /E where K is the

e e

elastic limit of the material (i.e., the stress at which the material

fails to resume its original shape when the applied forces are re-

moved and tends to rupture) and E is the modulus of elasticity, so

that the ratio K /E expresses the limiting elongation per unit length

e

of material. We have

dC Ke "
267. -_ m __ ,

E

where

268. c : e_y;
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accordingly, on differentiating we have:

269. dC = 2_dy

and therefore, dividing (269) by (268), we get

270. d_=dy_____
C y E

whence_ noting that dy = h_ we obtain

271.

Ke
h<y • E

Of course, y and h consequently h are variables even for the

same aerostat and proportional to the diameter of the cross section.

The depth of the corrugations

272. h=y "
E

is perfectly safe_ since the true depth diminishes steadily as the

walls of the aerostat stretch and the folds in the envelope straighten

out, hence the danger of rupture likewise steadily decreases; then

the true depth of the corrugations is not constant but decreases as
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the distance from the center-line (Fig. 20) of the metal envelope in-
creases.

273. Wehave determined the maximumdepth h from the stand-
point of the cross-sectional dimensions of the aerostat; we shall now
determine this depth from the standpoint of the elastic longitudinal
stretching of the corrugated surface of the aerostat; to be precise,
we shall seek to determine the least depth h that the corrugations
can have and still be able to stretch by a certain fraction A/dx of
their length, when formed in sheet metal of thickness 8, and then to
return to the earlier value y as the effect of the tensile force
decreases.

Let Fig. 27 represent part of a corrugation between the center-
line and the crest. Assuming, for convenience, that the corrugations
are arranged horizontally, wedesignate by 2z the variable depth of
the corrugation from the high point to the low point; the correspond-
ing constant depth (when the corrugated surface is no longer subject
to tensile forces) maybe designated 2h; finally, the wavelength
from the high point to the adjacent low point maybe designated 2L.
Clearly, from Fig. 27, the depth of the corrugation comprises only
a small fraction of the wavelengthl, so that, in spite of any second-
order waves -- provided only that these are similar in shape to the
principal waves -- we have, approximately:

Z

274. V = H " -- •
L

which expresses the relationship between the longitudinal force H

and the normal force V that act to bend the plate into the position

depicted in Fig. 27.

Let us consider the effect of the normal force. Figure 28

shows a plate of thickness 5 and unit width.

iUsually the w_velength is understood to be twice this length or

4L.
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275. A fairly simple integration yields the formula SE5 for

3
the action of the force on the lever arm 5/2 (Fig. 28) fo_ a relative
elongation c of the surface portions of the bent plate _. This

force (275) is balanced by another force V acting on a lever arm of

Fig. 27.

length x; consequently, in accordance with the laws of statics, we
have

276. Vx =_3/ -
2

or

2
eE5

277". V -
6x

i
c is the elongation per unit length of the surface layer, or

[of. (265)].
E
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Fig. 28.

We have, approximately

Cdx = - • d_;
2

whence the differential of angular rotation of the plate

278. d_ - Cdx _ 2 dx.

2

The differential of the deflection t of the end of the

plate is

2_

279. dt = x " d_ = -_ • _dx,
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or, in accordance with (277) and eliminating _:

12Vx 2

280. dt _ " dx.

53E

On integrating this expression, we have

4Vx 5
281. t _

53E

Putting x = L and given, in accordance with (247), that

Z

V = H " - , we obtain
L

282.

53E

This equation shows the deflection of the end of the plate

to the point z as a function of the longitudinal tensile force.

In equation (277) let us put x = L and

K e
283. c = -- ;

E

whereupon we obtain
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Ke82
284. V - ,

6L

whence, by meansof (274), we find

K 52
285. H e

6z

or

2
Ke$

286. z -

6H

Since the greatest depth of the corrugation is h,

28(. _ = h - z (Fig. 27); accordingly, by means of equation
(282), we obtain

288. [z - E _3 (h-z)

4L 2 z

From this equation and from equation (285), eliminating H,
we have

m I - _ • i

L h L 35E
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clearly, the first and second parts of this expression are identical.

h - z
It gives the relative deflection -- of the plate as a function of

L

its dimensions and the properties of the material of which it is

made.

290. From the ratios h/L and z/h we can also find, by purely

geometrical means, the longitudinal elongation of the corrugations.

A normal cross section through the plate or corrugation has the

form (Fig. 27) of a curve which_ in view of its gentle slope, may be

regarded as the inclined straight line S, so that, according to

Fig. 27, we have approximately

2 2 2 2 2 h2291. S = L + z and S = L + ,
0

and hence

292. s_il a= _ l+
Z - %/ L0

but since the ratios z/L and h/L constitute a small fraction of

0

unity,

293. S z2 S h2

-- = i + -- and -- = I + -- ;
L 2L 2 L^ 2L 2

U 0

subtracting one from both sides, we obtain
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2
294. S - L z

and
S - h0 h 2

h 2L 2

0 0

L0
and since -- _ i, we may write

L

2 _ h 2S - L z S L
- and ___I = __ .

o 2
0 0 0

We have determined the relative elongation of the corrugated

surface independently of its elasticity, when it passes from the

corrugated form with deflection z to the perfectly flattened state,

something which cannot occur in actual practice, for that would re-

quire an infinite longitudinal force which would have the effect of

destroying the surface rather than stretching it.
The elongation corresponding to a deflection h is h2/2L2;

0

consequently_ the elongation corresponding to a deflection from h

to z will be:

295. L - L0

2 2
h - z

2

L 2L
0 0

or, dividing the numerator and denominator on the righthand side by

h2:
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296. L - L0 I z2 h2

L0 2 h2 L02

Note that the true elongation is slightly greater than that

given by the formula.

Minimum Dimensions of Envelope. Application to Various Shapes

297. Now we have all the data needed to find the minimum di-

mensions of the metal envelope from the point of view of its struc-

tural integrity and the elastic stretching of its corrugated surface

on passing from the folded to the inflated form.

For any aerostat, as we have seen, the relative elongation of

the panels is expressed approximately by the formula (253):

A I -w2 d2y

--=-- " Y " 2
dx 8 dx

This is the maximum elongation along the center-line of the

gas envelope (Fig. 20); if this elongation is elastic, then the

elongation of the other panels forming part of the same strip above

and below the center-line (Fig. 20) will certainly be elastic;

actually, the number of corrugations in each panel of a given strip

is constant, so that the wavelength is constant for each strip; the

depth of the corrugation gradually diminishes, tending to zero at

the ends of the strip. Naturally, then, if the stretching of the

steep corrugations at the center-line is elastic, that of the

gentler corrugations will be even more so. It is for this reason

that I use only the steepest corrugation at the center-line in my

calculations.
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The stretching (Fig. 21) is inevitable in view of the geometri-
cal properties of the folding surface. But, on the other hand, t_e
elongation of the corrugated surface als a function of the slope h/L

of the corrugations and the bending z/h is determined by equation

Therefore, eliminating A /dx or, which amounts to the same

r 1

L - L0 , from equations (253) and (296), we find

L

298*. _n2 d2x z2 h2

T
4 dx 2 h 2 L

0

Now from this equation and (289), on eliminating h/L, we get

299. 2
L =

• Y 52. -
-9 w2 Y .... .

16 dx 2 k2 <i +g)
e

Hence, using (289)and eliminating L, we find

300. h = -_33. _2y . d2Y . _E

8 dx 2 + -- .K
h e

Here we find the depth h of the corrugation as a function of

the geometrical properties of the general shape of the aerostat, the

form of the corrugated surface and its elasticity; however, we have
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taken into account the transverse bending of the corrugated surface,

when the gas envelope is inflated. For this we have formula (271),

which we now transform thus:

301.
K e

h=y " --;
nE

where n is a safety factor indicating how many times the depth of

the corrugations should, for safety's sake, be assumed less than the

critical depth defined by formula (271).

From the last two equations, on eliminating h, we have

302.

d2y nSE 2-3
I=_. _2 _ .

• 2 ¢)+8 dx _
h

e

303. For example, for a parabolic aerostat we find

d2y -2y I
u

2
dx 2 x

I

Accordingly, on eliminating the second-order derivative from equation

(302), we have

= 2 __ii_2 nSE2
Yl w 4 +
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304. Clearly then, the radius y of the greatest cross
1

section through the envelope is directly proportional to the thick-

ness 8 or strength* of the envelope (with respect to failure of the

corrugated surface), and inversely proportional to the square of the

limiting elastic strain Ke/E 2.

This radius y is also inversely proportional to the square

y2 12j z/h.x! of the aspect ratio of the envelope and the quantity i +

i i

305. Clearly, the height 2y of the envelope may be arbitrarily
i

small if the aspect ratio is sufficiently large; the thickness 5 of

the envelope and the other variables included in the formula may be

either arbitrarily large or arbitrarily small.

306. The dimension 2y of the envelope may also be as small

1

as desired even with a small aspect ratio x /y , provided the envelope
1 1

thickness is sufficiently small.

307. The limiting elastic strain K /E depends on the material
e

selected for the envelope.

(according to Bach),7 for wrought iron or cast iron we mayThus

assume that on the average K /E = I/lO00.

e

For untempered drawn iron (e.g., for wire) K /E = 1/500; for
e

tempered drawn iron K /E = 1,//1000, i.e., the same as for wrought
@

iron; for the best-quality tempered steel K /E _ 1/250; for rolled
e

copper or bronze sheet, on the average K /E _1/3000.
e

*More accurately, the elastic safety factor.
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But there exists a grade of forged bronze for which

i a I

4oo E 3OO

308. In equation (303), we n_ay put

Yl I i K I z I

= ; _ = mm; n = I; = ; =

x 7 7 E 500 h 3
I

so that y = 4, i.e., the vertical diameter of the elastic folding
i

metal envelope will be less than 8 meters. But if we were to use

material twice as thick, the height of the envelope would be twice

as great, i.e., 16 meters. Now if all the data of (308) were left

the same, but the height 2y of the envelope increased, say by 3 times,
1

then n would be increased by the same number of times.

309. We find the depth h of the corrugations from the

equation (271):

nE

Hence, given the data of (308), we find h = 8 mm, i.e., 2h =
= 16 mm.

From this equation and (289), eliminating h, we find the

w_velength L:

I
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2 n h

310. For the data of (308) and y = 4 meters, we find

L = 23.9 ram, or 2L _ 48 ram; the ratio I/h = 3. At other cross

sections through the same envelope L and h will be smaller.

311. We must bear in mind that the depth h computed from

these formulas is perfectly safe; actually, as the walls of the

envelope stretch and the corrugations straighten out, their true

depth, like the danger of rupture or wrinkling, will steadily de-

crease. Moreover, the true depth decreases the greater the distance

from the center-line, as the longitudinal girders are approached

(Fig. i).

312. If we took thicker and less elastic material for our

envelope, for instance, soft annealed iron 2/7 mm thick, the dimen-

sions of the elastic bag would be far greater; thus, for a para-

bolic aerostat, y = 32 meters or 2y = 64 meters,-in accolklance
i I

with formula (303).

313. But this does not imply that it is impossible to con-

struct small aerostats using material of low elasticity (K/E=L/IO00).

e

In fact, as the aerostat is inflated the corrugations may at

first stretch inelastically. But for volume changes once the en-

velope is full of gas, even moderate elasticity will be entirely
sufficient.

314. In this ease we make use of equation (298), from which

we find geometrically, independently of the elasticity of the material:

h w i -d2y y

L 0 2 da 2 1 - _ "
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315. Thus, for a parabolic envelope we have

t

h = Yl / y

2Y 1

316. Here, h may be determined empirically or by means of

formula (271) :

K

h=y .__e.
nE

Of course, h will be different for each cross section. Sup-

pose, for example, that we are constructing an envelope with a

height, in the inflated state, of 25 meters; further, let us suppose

Ke 1
that n = l, -- = _ (mild steel), Yl = 121/_; we then arrive atE lO00

h = 121/_ mm.

Now, for the central cross section let us substitute in

Yl 1 z 1

Yl .......formula (315): y = ' Xl 7 ' h 5 ; we then find Lh = 3.341.

Thus, the wavelength will be 3 and I/3 times the depth h. In the

same way we compute the greatest depth of the corrugations at other

normal cross sections through the envelope.

317. In view of the fact that, in practice, the simplest

possible form must be given to the corrugations, without super-

imposing second-order waves, formula (271) will not always prove

useable; the best procedure is to find by experiment the safe maxi-

mum radius of curvature for specific corrugated surfaces made of dif-
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ferent materials and with corrugations of different size and shape.

318. So far I have applied my general formulas (302) solely

to a parabolic aerostat.

For an elliptical envelope

Y = Yl i - --

and hence

d2y -Yl4

23
dx 2 xlY

Accordingly, by eliminating the derivative from equation (302),

we obtain

319.

+ _- Ke

Clearly_ the radius of the central cross section Yl depends

on y, i.e., the size of the envelope of an elliptical aerostat is

inversely proportional to _, or to the cube of the radius of the

smallest cross section of the envelope, at the point where the cor-

rugations end and the smooth conical surface begins.
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Yl
320. Thus, given the conditions of (308) and assuming -- = 3,

Y
Yl

we arrive at Yl = 54 meters; while if -- = 2, Yl = 16 meters.
Y

These dimensions are extremely large. Therefore an elliptical

aerostat can not be considered practicable.

In a parabolic aerostatj the folds and corrugations decrease

in proportion to the decrease in the radius of the cross section;

therefore, if the corrugations bend without difficulty in the middle,

they will bend even more readily at the narrow ends of the corrugated

surface. In an elliptical aerostat, on the other hand, the gaps or

corrugations increase rapidly toward the edges, so that safe bending

at the middle of the envelope does not insure safe bending at the

narrow ends, but quite the contrary. As a consequence, the calcu-

lations (319) are made for the end rather than the middle cross sec-

tion.

321. For a surface of revolution_ the central longitudinal

section of which is expressed by the formula

2 3/4

Y = Yl 0 - "_') '
x 1

2

__
dx 2

x 2
2

Y x_

Accordingly_ eliminating the second derivative from equation

(302), we obtain

322.

z 4/ x z
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Clearly, from the formula, the radius Yl of the central cross

section increases as the radius y of the smooth conical surfaces at

the ends of the aerostat decreases. But this increase is not so

rapid as in the case of an elliptical aerostat.

323. Assuming the conditions of (308) and assuming further

that x = 3/4, we find from equations (321) and (322)
x I

Yl
= 1.86 and y_ = 6.08 m.

Y

This aerostat would not be very large, even if the smooth
cones were smaller.

324. For an elongated cosinusoid (260):

_ • x _ and d2y __2 y
Y = Yl cos " 2x 1 dx 2 4 x_

Consequently, from (302) we have:

3 " w4

325. Yl : 32
YI_ 2 y n. 8 E2

I+ • Ke

Clearly_ the dimension Yl is proportional to y. The calcula-
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tions must be done putting y = YI" Wethen obtain

326. Yl = 3 • Tr4 . CY__I")2 n. 5.

32  xlJ6 +

Compared with a parabolic aerostat under identical conditions,

the dimension Yl for this balloon will be (_) , or 1.2337, times

greater, i.e., y will be 4.93 meters, or about 5 meters.

We should not forget formulas (271) and (310) in connection

with the wavelength and depth of the corrugations. Thus, we can de-

rive the slope h/L from these two equations:

327.

h Ke J 2y3n5 +

328. The last equation shows that the slope h/L of the corru-

gations increases as V_as the cross section or the distance to the

ends of the elongated envelope decreases.

329. If the thickness 5 diminishes toward the ends of the

envelope in proportion to the decrease in the dimension y of the

cross section, so that the ratio y/5 remains constant, then_ as will

be clear from the last formula, the slope along any given line run-

ning from end to end of the envelope will likewise remain constant.

Both the depth and the wavelength of the corrugations will fall off
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toward the ends of the envelope (271) .

330. If we disregard the properties of the material and center
our attention on the geometrical conditions, we must not forget
formula (314) in determining the slope. Thus, for a parabolic aero-
stat we have formula (315), but for an elliptical aerostat, on the
basis of (314) and (315) we compute

h
331. -- =

Lo

w22
Yl

3

j 22yx I I - z_.
x 2

from which it is clear that the slope h_L O for an elliptical gas

envelope will be inversely proportional to the dimension y of the

cross section, whereas in the case of a parabolic envelope it is

directly proportional to _(cf. formula (315)).

Clearly then, as we also see from the general formula (314),

the law of the slope h/L 0 depends on the shape of the elongated en-

velope, if the stretching of the corrugated surface is only partially

elastic. Otherwise, the curvature _L will be independent of the

shape, and will depend solely on the dimension y of the cross section

[cf. equation (327) ].

Stretchin_ of the Corrugated Surface in General

332. In general, the formulas in this chapter will also prove

useful for determining the elastic elongation of the corrugated
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surface and the force producing that elongation.

Thus, from formula (289), denoting the slope h/L of the corru-

gations as k, we obtain

2LK
z e

333. --= 1
h 3kSE

Now, from (296), by eliminating z/h, we find

- _'o 2% . G ._"_-j334. = -- •

% 3_E "-

335- Clearly, the elastic elongation of the corrugated plane

in general, irrespective of the type of aerostat, will increase with

increase in the slope h/L of the corrugations.

This formula may be rewritten:

, -,.o_ i-,_0
% 2

It is now obvious that the relative elastic and the maximum

elongation is inversely proportional to the thickness 5 of the sur-

face, and directly proportionalto the wavelength L and to the

limiting strain Ke/E of the material. When the ratio L/5 of wave-

length to thickness remains constant, the relative elongation remains

constant.

i_ i _
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336. For example, when L = 20 ram, 8 = 1/7 mm, _ = 1/500,

L=LO E
k = 1/3, we find from (334) that = 0.4445, i.e., about 1/22.

L

337. We must also find the tensile force H acting on the

corrugated surface; equation (288) will serve this purpose. On

eliminating the ratio h_z from that equation by means of formula

(333), we get

H
max

Clearly, the tensile force will be proportional to the modulus

of elasticity E and the thickness of the material. But it will be

E
inversely proportional to the ratio -- and the slope of the corruga-

tions. The formula gives the maximum tensile force when the elastic
limit K is reached.

e

338. Suppose that, for instance, 5 = I/7 rmu= 1/70 cm, L =

=2o==2 ore, 5oo, = 1/3, E=2.10

Then, in accordance with the last fozmula, we find as the

limiting elastic tensile force on a corrugated surface i cm wide:

H= O.46 kg.

339. We are also in a position to demonstrate the relation-

ship between the tensile force H and the corresponding relative

elongation ¢ of the corrugated surface. We find from (296), writing
r

L-L 0
instead of for the sake of brevity:

r L°
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h i

Z

Now, eliminating _z from (288), we find

=_ [j _ _].
4 • L2 <%)2i - 2 _F

This shows only that an increase in the elongation _F means a

proportionate increase in the force H required to produce this

elongation.

340. But this last formula can be simplified. In fact, if

the corrugations are sufficiently steep_ the expression 2 <_ '_ cF

will represent a small fraction, so that we may write

Simplifying the formula in this way_ we find
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83E
H _ m •

4L 2

or, again approximately and on the same basis as before, discarding

the comparatively insignificant negative term in the denominator,

we have

83E

H= _ eF.
4h2

341. Accordingly, the tensile force may be assumed to be ap-

proximately proportional to the elongation cF of the corrugated sur-

face. Let us not forget that this last formula is used when cF is

very small compared with the limiting elongation. This means that the

tensile force will be proportional to eF only at the very beginning,

whereas later it will increase at a much faster rate than cF.

Thus, for the limiting elongation, putting E = 2 • 106 kg/cm 2

L = 2 cm, k = 1/3, and h = 2/3, cF = 1/22, 5 = 1.70 cm, we find from

the simplified formula H = O.15 kg, but in actual fact

: o.49kg [of (33s)]

Consequently, when cF is close to the elastic limit, it is
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necessary to use formula (339).

Application of the Formulas to Straisht Corrugations.

Various Systems of Folding and Convoluted

Metal Envelopes

342. It is clear from this chapter and from Chapter V that

in the folded state the corrugated surface of the aerostat envelope

may take one of two forms: the form of straight corrugations

(Chapter V) with crests at right angles to the principal longi-

tudinal axis of the envelope (Fig. 5), or the form of curved corru-

gations (Fig. 20). The calculations in Chapter VII relate to the

latter variant, the second form of the metal envelope.

The construction of an envelope of the first or straight-

corrugation type is incomparably simpler and consequently is more to

be recommended, particularly large aerostats, though this type of

envelope may also have certain disadvantages.

The formulas in Chapter VII are equally applicable to the

construction of a folding metal envelope with straight corrugations

(Fig. 5), except that some of them then prove superfluous, notably

(233), (234), and (236). But these formulas, of course, were neces-

sary to the derivation of other equations, without the aid of which

it would have been impossible to investigate the conditions and pre-

requisites for constructing the metal envelope of an aerostat.

My formulas are also applicable to the construction of a

dirigible with a soft envelope. Assuming, for instance, the simplest

possible design (Fig. 5) for an elongated envelope, we can use equa-

tions (240) and (241) to determine the size of the folds between the

strips of material (Fig. 2). Having sewn up this envelope, with the

proper folds [formula (253) may prove useful in this respect]_ we find

that the folds smooth out as the balloon is inflated and the surface

of revolution begins to take shape.

343. But we must not lose sight of the fact that these

formulas still require correction, since the cross section of the en-

velope is not a circle, as we assumed, but some other more complicated

curve (Fig. I and Fig. 15), the shape of which will depend in part on

the magnitude of the longitudinal tensile force acting on the corru-

gated surface; only when this force is completely absent or when it

is ideally uniform will the shape be the same as that determined in

Chapter VI.
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344. The metal envelope of the aerostat could be madeof several
flat strips (Fig. 2), without corrugations_ so as to consist of say ten
or even fewer parts. But these parts must be connected by soft folds
(rubberized fabric or the like), which smooth out when the elongated
bag is filled with gas and its cross section more or less approxi-
mates a circle or someother well-defined shape. The smoothmetal
surfaces may overlap each other, thereby protecting the folds.

In someinstances_ for example in testing models and in early
experiments_ this type of envelope may find useful applications. The
aerostat will then be somewhatreminiscent of an insect covered with
rings which partially overlap each other. Here my formulas will be
required to calculate the shape and size of the soft folds*.

345. Experiments on models reveal that a streamlined envelope
can even be based on two smooth surfaces of double curvature joined
in the middle by a single metal-shielded fold. The aerostat will have
approximately the sameshape and the sameproperties as one madewith
a corrugated surface.

346. Final!y_ my calculations and experiments on models also
indicate the possibility of designing a smooth aerostat entirely free
of folds. But the shape of the cross section will depart slightly
from that arrived at in Chapter VI and depicted in Figures l_ 13, 15.
Such aerostats are feasible given a slight change in volume (about
one tenth).

Envelopes in the last two categories have the further disad-
vantage_ in addition to those noted earlier_ that they cannot be
folded flat_ so that they will present great difficulties in connec-
tion with the processes of fabrication and inflation.

*This aerostat was approved by Prof. Zhukovskiy [Joukowski] and by
foreign specialists and patented internationally but I was the
first to reject it as being imperfect.



164

VIII. THE PRINCIPAL LONGITUDINAL CROSS SECTION OF THE

ENVELOPE AND ITS PROPERTIES. SURFACE AND VOLUME

OF THE ENVELOPE. MOMENT OF THE WEIGHT

OF THE ENVELOPE AND MOMENT OF THE

LIFTING FORCE OF THE GAS.

Choice of Longitudinal Section of Envelope

347. The shape of the cross section of the aerostat is largely

determined by certain natural conditions: gas pressure, gravity, the

longitudinal elasticity of the corrugated surface. Even though we

can artificially influence these conditions to some extent, on the

whole the cross section of the envelope will retain its characteristic

shape (Figs. l, 15).

By contrast, the cross section of a ship depends more on the

designer. It is usually defined by a curve somewhere between a semi-

circle and the circumscribed rectangle, and is expressed as the

equation of the parabola:

X m

Here x is the horizontal half-width of the cross section, and
I

Yl its height (Fig. 29).

The larger the value of m, the more closely the cross section

will approximate to a rectangle; when m = I the cross section becomes

a triangle. Clearly, m > i. Moreover, m must be a fairly large

number in order to make the more or less rounded cross section closer

to a rectangle, minimize rolling, and raise the metacenter as high

as possible. The stability of the ship demands this shape_ since

the stability will be the greater the higher the metacenter and the

lower the center of gravity.

349. In our case, the lateral rolling (Fig. i) is reduced by

the enormous indented surface at the top of the envelope and by the
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gondola -- which acts as a keel. In addition, the low position of

the center of gravity and the high position of the metacenter give

the transverse section of the envelope excellent stability.

350. But the longitudinal section of the envelope, like a

ship's hull_ may be given a variety of shapes: in a ship the central

longitudinal section may be defined approximately by the same para-

bolic curve (348) as the transverse section, except, of course, that

the ratio xl/Y I will be much larger than in the case of the trans-

verse section, where it will usually be only slightly greater than

unity, whereas in the case of the longitudinal section the ratio may
be I0 or more.

The bow of a ship is sometimes made more convex and steeper

than the stem, in the manner of fishes or birds, the object being to

minimize the resistance of the water. As for m, it assumes a wide

range of values in different types of ships; in both transverse and

longitudinal sections the greater m the steeper the slope of the

curve and the greater the so-called fullness of the section and the

amount of water displaced.

Clearly, a decrease in m results in a certain decrease in the

drag of the hull and contributes to a higher speed through the water.

351. Theoretical attempts to determine the form offering

least resistance, and even experiments designed for that purpose,

have failed to yield useful results, and the principal laws which

have so far governed the design of ships have not been subtle and

sophisticated, but simply the traditional parabola and its equation

for both the longitudinal and transverse sections.

352. The shape of the longitudinal section of an aerostat

envelope is limited not only by the minimum resistance requirement

but also by convenience in construction and the requirement of ade-

quate longitudinal stability.

In order to achieve variable volume and plane construction,

the aerostat must end in conical surfaces. Accordingly, rounded

ends, as in the case of an ellipsoid of revolution, are impractical

from this point of view. Moreover, we have seen (Chapter VII) that

certain shapes require a large metal envelope, if the volume is to be

safely varied.

This likewise places restrictions on the choice of envelope

shape.

But if we are not concerned about the size of the aerostat,

we are, of course, free to resort to other shapes, even to an

ellipsoid, except that the rounded ends must be replaced by conical



166

surfaces tangent to the ellipsoid.

353. The traditional parabola used for ships thus deserves

our attention in relation both to the minimization of resistance and

to construction. Aside from my numerous experiments on air resistance*,

extending over many years, the very fact of the use of the parabola

in the design of ships is a compelling argument in support of its

advantages with respect to drag.

354. Let us now turn our attention to the question of design.

I have already given the equation of a parabola:

m

y yl< x) °m
x I

Hence

(_ l) _ __i YlX_12 i_

d2y

_ = - m - m "

dx 2 x I

Consequently, on the basis of equation (302), we find

3 @ (m - I)m
355. Yl _ \x lj

Z

m-2

*Cf. my articles "Air resistance," "Horizontal motion of a dirigible,"

"Air pressure, " and other works on drag.
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We have now found the radius Yl of the center cross section of

a metal envelope folding elastically into a plane.

There are three possible cases:

m = 2, m _ 2 and m < 2.

356. In the first case the equation of the parabola will be:

This is an ordinary parabola, i.e., a conic section. We

shall term its slope the average slope.

m-2

In this case, the factor (x_) in equation (355) will be

unity. Consequently, the dimension Yl of the aerostat will not de-

pend on x, or on a most dangerous cross section. All the cross

sections will be equally dangerous or equally safe.

357. In the second case the curve will be steeper, i.e._

more air will be displaced, the displacement being the greater the

higher the value of m. We can see from equation (355) that Yl will

depend on x or on the cross sections where the smooth cones begin.

The smaller the latter and the larger the ratio x/x I the greater will

be the vertical dimension Yl of the envelope. But we can not make

the smooth cones very large. The ratio x/x I will therefore be
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roughly 9/10 to 4/5 , but not less. It is to this range of values of

x/x I that Yl must also correspond.

Consequently, in comparison to a simple conical parabola, the

dimension Yl of the envelope will be Em 2(m-.III (x_)m-2] or

Im 2(m-1).1 (-_1 7] times greater, where p is any positive number

equal to (m - 2).

358. If, for example, m = 3 while x = 4/5, then
xI

m (m- I) (xT-2
• _i_ = 2.4,2 I

i.e., Yl will be 2.4 times greater than in the case of a conic section.

359. In the third case, when m < 2, Yl will also depend on

f _x- m-2

the ratio k_l_
g

We may then write

x ,m-2

= _.X I ./

where p is likewise any positive number less than two.
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Clearly, the dimension Yl will vary inversely with x; we must

therefore computeYl for the minimumx.

But whenx = O, according to equation (355), Yl is infinity,

so that in this case an aerostat will be impossible.

360. The reason why it is impossible at once becomesevident
whenwe turn our attention to the radius of curvature p of the para-
bola. It is :

361. p =
xI _ Ylx

If we assumethat m is somenumberat most slightly less than
two, we have m = 2 - p, where p is any positive number less than two.

The radius of curvature p will then be:

/
2 2-2p _ 2m 2p

-i (i 2 YlX)i) ]Xl x
362. p = -- - + m _ + m2x 2.

m (m 2m 2
Xl Yl

When x = 0, clearly, the radius of curvature will also vanish,

no matter how small p.

Here the infinitely large curvature at the center cross sec-

tion of the metal envelope prevents its construction, even though at

a glance the curve appears to be perfectly smooth, particularly when

m is only slightly less than two. But the further this exponent m

departs from two and the more closely it approaches unity, the more

noticeable will become the rounded _ in the center of the envelope,

and, in the limit when m = I, the envelope will consist of two conical
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surfaces joined at the base. Thus_ there is no point of even con-

sidering a parabolic envelope if m < 2.

363. We arrive at exactly the same result if we eliminate

the abscissa x from equation (355) by means of equation (348) for a
parabolic curve.

We obtain

and consequently:

m-I

_---_ (m - I)m (I + h) 6 -
364. Yl = 8 2

K
e

365. The ratio of the dimensions of this parabolic envelope

and a simple envelope (conic section) is

m(m -I)i• 2 (i - _i_--

m-2

m

Clearly_ then_ the smaller y, or the radius of the base of the

base of the smooth cone_ the greater will be the ratio of the dimen-

sions of the envelopes; in the limit it will attain the value

m(m - i
; for example_ in the case of a cubic parabola_ we get three.

i " 2
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But the greater y, the smaller this ratio becomes, and when the

radius y of the smooth cone becomes equal to the dimension Yl of the

center cross section, i.e., when the dimension of the parabolic en-

velope becomes infinitesimally small, it vanishes. This will become

clear from an inspection of formula (361) for the radius of curva-

ture_ which goes to infinity at the center cross section where x = O.

Here an element of the surface is cylindrical.

,#

Fig. 29

From the above we can derive the following summary based on

a parabolic curve: a) the curve varies between a triangle and a

rectangle (Fig. 29); b) construction of the envelope will be possible

only if m is equal to or greater than two; c) the greater the ex-

ponent m, the greater the dimensions of the folding metal envelope;

d) the smallest dimensions of the envelope will correspond to m = 2,

i.e., to a conic section; e) the greater the value of m, the steeper

will be the slope of the curve and the more closely the curve will

approximate to a rectangle (Fig. 29); f) in the case of a conic

section, when m = 2, the radius of curvature (361) will vary ex-

tremely little, increasing imperceptibly from the middle of the

curve toward the extremities, as is clear from (361) on substituting

m = 2. We then obtain
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366. 2 2 Jx 4P:T +4. 1 .
x I Yl

Clearly, as x increases, i.e., toward the ends of the aero-

star, the radius of curvature increases. The minimum lies at x = O_

and the maximum at x = x 1.

367 . Consequently, the maximum radius of curvature

J 2

max 2y--_ 2Yl x I

and the minimum radius of curvature

2
x
I

u

Pmin = 2y I

368. The ratio will be:

2
Pmin -_

x I
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x I
For example, if the aspect ratio of the aerostat -- = 6, the

Yl

ratio of the radii will be 1.17.

This means that the radius of curvature will increase only at

a very slow rate in the direction of the ends of the envelope, i.e.,

the curve will approximate an arc of a circle. The greater the

xI
aspect ratio --, the closer the approximation will be.

Yl

369. With respect to construction, we see that the following

curves are feasible; a parabola if the exponent m _ 2; an ellipse

with conical tips; a curve intermediate between these two_ an

elongated cosinusoid.

Of course_ a multiplicity of other curves is also possible.

With respect to drag my experiments failed to reveal any

great difference even between such surfaces as an ellipsoid and a

surface of revolution whose generatrix is an arc of a circle. The

drag, moreover, also depends on the velocity. Thus, when the ve-

locity is low, rounded ends and a steeper forward section (nose

section) are advantageous. At higher velocities, these features

would be of little value. I shall merely stress that longitudinal

sections through the envelope should not have angles except at the

extremities_ and that the curves should be smooth, like an arc of a

circle or a parabola.

370. Assuming that the metal envelope has the shape of a

surface of revolution, I shall now compute: the radius of curvature,

the arc length of the longitudinal cross section, the cross-sectional

areas, the surface area, the volume, the moment of the weight of the

envelope, and the moment of the lift force exerted by the gas.

General Formulas

371. For this purpose I shall make use of the following general

formulas: for the radius of curvature
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p=

dx2

372. For the (exact) length of the arc:

Jds = I + dx.

373. For the (exact) surface area:

F = 2w _ yds,

or approximately_ if the envelope is elongated:

F = 2w _ ydx.

374. By expanding ds in series_ we obtain more accurate

formulas for the length of the arc and the surface area:
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128 \Ix i

For example_ if we limit ourselves to three terms for the arc

s and two for the surface area_ we have

F_g. 5o

For the volume of a body of revolution we have (exactly):

377, U=w _ y2dx.
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The area of the longitudinal section is (exactly):

378. F d = 2 _ ydx,

i.e._ approximately w times less than the surface of revolution

(373).

379. By the moment of the envelope relative to some plane M

I mean the product of the weight of an element of the envelope and

its distance x from that plane (Fig. 30). The total moment of the

envelope may be approximately expressed by the integral

Menv = _ 2wUfqxdx = 2wq _ yxdx,

where q denotes the weight of the envelope per unit area.

Gravity is one of the destructive forces acting on the aero-

stat. The total moment of the envelope is a factor tending to cause

the collapse of the aerostat. It must be counteracted by the stiff-

ness of the envelope and the four longitudinal girders.

380. By the moment of the lift force relative to some plane

M (Fig. 30) I mean the product of the lift force of an element of the

gas and its distance from that plane. The total moment of the lift

force relative to the plane M may obviously be expressed exactly by

the integral

Mgas = _wa_xdx = wa _y2xdx_
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where a = 7air - 7gas_ i.e., is equal to the difference between the

density of the air and that of the gas filling the aerostat.

381. The total moment of the lift force is also a resu!tantj

but acts in the opposite direction to the total moment of the en-

velope. There is a third destructive force that depends on the

vapor pressure of the gas; its magnitude varies as a function of the

degree of inflation of the envelope. However, I shall discuss this

force separately later on.

Application of the General Formulas to a

Parabola (Conic Section_

382. Having derived the necessary formulas, I shall now show

how to apply them. Let us begin with the length of the arc of the

longitudinal section.

For a parabola the corresponding equation is:

and its first derivative:

d_y= 2xYl

dx x21

If we now put x = xl_ we obtain_ approximately_ the t_ngent

of the angle made by the generatrix of the end cone with it_ axis,

namely:



d_ = -2Yl
dx x 1

Actually_ the more elongated the aerostat, the smaller the

angle of the cone. From equation (375), we find on integrating that

383. s = x #Ll+ • @

x I x I

The length of the entire arc from zero to x I is found by

putting x = x I. Then:

384.
2 2

x I x I

Discarding the last term herej we get the less accurate
formula:

x I

For the surface area we make use of formula (376). On
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integrating_ we find:

The surface area from zero to xI is found by putting x = Xl:

386.
2 Y_4 6+- )

or_ less accurately:

4

l_I = _- _YlXl -

From the preceding formulas_ we can find the length of the arc

from the end xI to some intermediate point xj and likewise the sur-

face area; we shall obtain (sI - s) and (FI - F).

387. We find, approximately:

2Sl-S=X 1+ 3
x i
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2 2

x_
3 2 2

xI xI

and

388. The volume is found from formula (377). On integrating,

we find exactly:

2_ . _ x4

2 (l- 3 xl 5xz
: _. Ax -_+ __ ) •

This is the volume from zero to x.

When x = Xl_ we have:

8

_9. u_=_7_x_.

The volume of the end section from x to xI is:

z:

1[
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390. ui-u=  xl-x l-y
4

x + x )]

x I 5x I

391. The area of the longitudinal section is given by formula

(278). On integrating, we find exactly:

X 2W_

Fd = yl x _i 2)"
3x 1

When x = Xl, we have

2

392. Fdl = y YlXl;

the difference in areas

393. [2 @Fdl - Fd = Yl _ x I - x

2
X

394. In order to determine the moment of the envelope, we

make use of formula (379).

On integrating, we find the moment of the envelope relative

to the center cross section M from x to x (Fig. 30):
i
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M = __w x2
2

I

Formula (379) is only approximate. The exact formula is:

dsM = 2wq yx -- • dx.
env dx

But since ds differs only slightly from dx because of the

elongation of the envelope, and no great accuracy is required in de-

termining the moment of the gravitational forces, we may rest content
with formula (379).

395. If we put x = 0 in equation (394), we obtain the moment

from zero to Xl:

2

env -_ qYlXl"

396. The moment of the envelope relative to the plane N

(Fig. 30) from x to x I can also be computed without much trouble.
Thus:

(1 8 _x
MenvN = _- qylx2 _ • Xl + 2 •

2 4

x x
x2 3x_ "
i i
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397. In formula (380) we have an exact formula for determining

the moment of the lift force exerted by the gas. On integrating_ we

find the moment of the gas from zero to x:

w 22 i ......

Mgas 6 " aXlYl x_ 2
ax2_l (i_ x2 x 4

x 1

398. Putting x = x I in this equation_ we obtain the total

moment of the gas from zero to x I.

_as 6 ax .

399. The moment of (the lift force of) the gas relative to

the plane N (Fig. 38) from x to x I will be:

Note that in these formulas "a" stands for the difference be-

tween the density of the air and the density of the gas filling the

aerostat (the specific lift force of the gas).
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Radii of Curvature for Various Curves

400. We have seen how smooth and gentle is the variation of

the radius of curvature of the arc of a conic section (368). We have

also seen that the radius of curvature of other parabolas varies quite

strongly_ namely: from zero to some definite value when m < 2 and

the envelope cannot be successfully constructed_ and from infinity to

some definite value when m > 2 (see formulas (361) to (365)).

401. The equation of an ellipse with respect to its axes is:

J x2Y= Yl i - D
x2
I

And hence

dy xY I x _i d2y -Y_
-- = - = - -- -- and -

dx x2 Y x[ xly2 I - --

Xl x_

402. From these data and from (371 ) we now find the radius of
curvature :

p

x2

+ 2 f x2Yl

x2 : x_ <

I
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x 1

403. For instance, when x = O, PO = _l x I. But when x = Xl,

Yl PO

91 = _i " YI" Hence, the highest ratio of the radii will be -- =
Pl

\Yl j . This formula clearly shows how rapidly the radius of

curvature varies in the case of an ellipse. For example, when the

x1

aspect ratio of the envelope is 6, i.e., _l = 6_ the greatest radius

will be 216 times larger than the smallest radius, whereas, in the

case of a parabola (m = 2) the same ratio yields a value only slightly

greater than unity (368).

404. In the case of a curve which I shall term intermediate

between an ellipse and a parabola:

(l-x-)31 ,dy
Y = Yl x2 " d-x =

- 3xy I 3 XYl

2 2
X

1

x 2

405. And consequently:
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•

+ 4 _ --7-J ]

4 x2

i I x2y i
2

xI

+
3Y 1 x2

2
x
I

2
-2x

I

When x = O_ PO = 3y I "

Ii x2to zero_ and assuming - -_

x 1

But when x = Xl_ Pl 0.

= i
x2

2_ we have

2x I

As x tends

4x_
P-O ....

x 3y I

x2 2_ x2 )312. _ _+ l- _

I
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xI 2 2x I

Accordingly (in the case of highly elongated aerostats), we

have the approximate formula:

Px-+O = - -- (I

3Y I

3x 2

In the limit, when x = 0, we obtain, as above, using this

formula:

2x 2

Po = 3y I

When x tends to Xl_

1 x2 9 )
v(4

4x21 xI

PX -*X ....
1 3y I 2 - 1

J=_9_.x3.__. _ _ _.
2 4 2

x 1 x I
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When x = x I we may put Pl = O, but the ends of the envelope

will be rounded_ so that the first derivative will become infinite

when x = x • Thus, in the case of the intermediate curve_ the radius
I

of curvature will continuously decrease from the center toward the

ends_ even diminishing to zero.

406. An elongated cosinusoid may be expressed by the equation

cos(wx).
Y = Yl _-_x I

Hence we have

-- = sin ; - cos

dx 2 x dx 2 4x2
I

p

cos

2
4 Xl

407. When x = O, PO
Yl

When x = Xl_ Pl _ so that the ends of the curve will be

II



_9

almost straight segments, and this is a great advantage in construc-

ting our aerostat.

408. To sum up, when x = 0 the radii of curvature of a para-

bola, ellipse: intermediate curve, or elongated cosinusoid may be

expressed, respectively, as:

1 2 4
--; i; --; -- = o.4o5.
2 3

The multiplier -- being the same in all cases, may be omitted.
YI'

The least radius in the central part of the curve corresponds to the

cosinusoid (about 2/5), and the greatest to the ellipse.

At the ends of the curves, the radii will be as follows, in
the same order as before:

Yl Yl
+ ) I+ O; oo

_Yl 2Yl "/ x_ x I

Thus_ it will vary only slightly in the case of the parabola,

decrease drastically in the case of the ellipse, even vanish in the

case of the intermediate curve, and become infinite in the case of

the elongated cosinusoid. At the same time_ all the surfaces formed

by rotating these curves about their respective axes are very smooth

and differ very little with respect to the resistance they present.
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Area of Maximum Lon_itudina! Section for Different Shapes

409. For a parabola (392) the area of the maximum longitudinal

section is:

2

Fd = 3 YlXl"

For an ellipse; we find:

F d = -- x -- + x I arc sin .

Now if x = XlJ the total area from zero to Xl:

TI

F d : -_ • YlXl .

3_

410. Clearly_ then_ the section of an ellipsoid is -- or

1.178 times fuller. 8

For the intermediate curve:

= dx°

i
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411. Expanding in series and integrating, we find

= _i - I x2 3 x 4 I x6 ___ x8 )
Fd YlX _ " 2 160 4 179 6 2048 8

x 1 x 1 x 1 x 1

Discarding all but the first two terms,

I x2

i

3 i.e.
The area from zero to x I will be equal to _ • YlXl ,

slightly less than for an ellipse.

412. More exactly, taking three terms into consideration, we

obtain:

F d yl x _I - I x2 3 x4: -; " x_- _6o" x7)'
1 1

which, when x = Xl, yields a slightly lower figure, viz.
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i17

d 160 YlXl = 0.73125 YlXl .

413. Taking all the terms computed in (411), we find 0.723225 .

For an ellipsoid, (409) gives 0.785398 , i.e., an appreciably higher

figure.

In the case of an elongated cosinusoid_ the area of the prin-

cipal longitudinal section will be

F d = -- sinw YlXl

2

which, for x = Xl, yields -- •w YlXl"

This area is even smaller than that for a parabola_ to be pre-

cise -- or 1.0472 times smaller.
3

Length of Arc of Principal Longitudinal Section

414. The length of the arc of a parabola from zero to x I is
(384) :

/ 2__
sI : Xlkl+ 3

2 4
Yl 2 Yl

x 1

11
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x I

For instance, when Yl 6, s I x I 1.01821.

415. For an ellipse (374) :

s= +..;
(xi2 _ x2) x21 (x_ - x2) 2 x41

416. It is easy to integrate this expression. Restricting

ourselves to two terms_ we find

2 Xl+ x

s = x + 4x I x I x

or

S_.x= i + "4- %-_-I/ " --x " In

X
i+ --

xl _ "

I- x

x I

we put

X

The equation is inapplicable when _i is close to unity.
If

x 3 Yl 1

x I 4 ' x I 7 '
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we arrive at

s = 1.101224.

Yl

There are formulas for determining the total length of the

circuwLTerence of an ellipse, but we shall have no need for these_

since the ends of the ellipsoid of revolution must in any case be

replaced with cones.

417. In determining the arc of an elllpse, we can also ex-

pand its equation

J x2
Y = Yl I x21

in series:

I x2 i x4 I x6 5 #_ 55 xlO
Y : Yl \i - -_ • 2 8 " "_ - ['6 " 6 128 " -8 - 256 " i0

x I x I x I x I x I

418. In the case of an intermediate curve, formula (375) no

longer applies. But, on expanding the equation for an intermediate

curve_ we find

3 x2 3 x4 ___
Y=Yl 1- T " _ 32 4 m8

x I x I

£_...).
6 2oZ_ 8

x I x I

[I
, i
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X
Hence, clearly, from the preceding equation, if the ratio --

x I

is not too close to unity, both the ellipse and the intermediate

curve can be regarded as parabolas, so that the length of the curves

can be determined in conformity with the procedure established for a

parabola.

419. The length of the arc of an intermediate curve is ex-

pressed_ exactly, by the integral

Js=_ I+ • dx.

x 2
1

420. Rectification of the elongated cosinusoid does not pre-

sent any difficulties_ aside from its complexity. In fact, the

equation of the curve will be

Y = Yl cos m_

where

TUX
tU -

2x I

Here cos m may not be greater than unity.
The first derivative is:
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dy
= - m sin w,dx

where

_Yl
2x

1

m being always much less than unity.
Now, using formula (375), we find

m m4 m6
s : _ El+ --. sin2_--. sin4w+ •2 8 s±n6 _- ...]_"

Limiting ourselves_ for example_ to two terms and integrating,
we find

_i _X

x I

421. Putting x = Xl_ we now find the length of the arc from

zero to Xl:

: _ • -- = -- , -- . X 1 .

s I x+ 16 x I x+ 16 x2

]Ii

i
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Surface Areas of Different Bodies of Revolution

422. Let us now consider the surface areas of the bodies of

revolution (376). In the case of an elli_, formula (376) yields:

l+ • dx.

x I

If_ in view of the elongation of the metal envelope, we take

ds
-- = I, formula (376 ) reduces to the simpler form:
dx

423.

x 1

which yields

F = rWlX I x I - --+ arc sin ._x .

x I x2 x I

When x = x I

F I = -_- XlYl;



this is one-half the surface area of an ellipsoid of revolution from

zero to x1-
424. But we can also find the surface area of an ellipsoid

exactly- In fact, equation (423) yields

F =°'_IJ='-==_=I-#_=---%- l
x I

= _ x I -

+

425. When x = x I we obtain

F
i

arc=_nCl-
I
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Yl
If the ellipse is infinitely elongated_ then -- = 0 and

x I

Fl=_ ylxl+_

Neglecting the last term as infinitesimally small (compared

to the first term), we arrive at formula (423).

426. For the surface area of the body of revolution formed

by rotating an intermediate curve, we have from (373), approximately:

F= --_-)

x I

d-x.

Expanding and integrating_ we have

427 . When x = Xl, we find the surface area of the body of

revolution from zero to Xl, namely:
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_I I 3 5F = 2_YlXl - -£" _ -87

i.e., less than 3/4 of the surface area of the circumscribed cylinder.

428. We obtain more exact results when, in accordance with

(373), we find the integral:

I+

22
9x Yl

1/2

dx =

xJ)_J''?, x,, +,,-U ¢ _} dE)

429. For an elongated cosinusoid, we obtain (assuming ds = dx,

approximately):

F = 4xlY I • sin(-Wx .) .
2x I

When x = Xl:

F I = 4xlY I.

rJJ
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kccor&inglY, the surface area of the en_ section from x to x1

will be"

__..__-___.
Fl- F = _xlYl_l - sln_2x l-

k30.
We obtain, exactlY:

F = 2_Yl

This expression can easily be integrate&, giving

4"

4"
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The formulas will be simpler if we introduce hyperbolic func-

tions.

432. For an infinite aspect ratio, we obtain the familiar

formula

F = 4xlY I (cf. equation (429)).

Volumes of Different Bodies of Revolution

433. The exact volume of an ellipsoid of revolution from zero

to x is:

2

6 x )
2

3x I

The volmne from zero to xI will be

2 22

UI 3 V_J x I.

434. On comparing this with the volume obtained by rotating

a parabola, we find that the volume of the ellipsoid, given the same

values for x I and YI' will be 5/4 or 1-1/4 times fuller.
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435. The volume of an intermediate curve is expressed exactly,

according to the general formula_ by the integral

dx.

Expanding and integrating, we find

U= x -
2

x2 3 x4 l x6 l x8 h

2 40 4 102 6 384 8
xI x I x I x I

436. When x = Xl_ we find approxim_tely_ confining ourselves

to the terms given:

U I = O. 587wy21x I.

This volume is 1.103 times fuller than the _arabolic volume.

437. The volume of the body obtained by rotating an elongated

cosinusoid about its axis, from zero to x, is expressed exactly by

the formula

Xl Cwx_ .
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When x = Xl, we have

_iXl"UI= 2

This volu_e turns out to be 16/15 or 11/15 times less than the

volume of a parabolic envelope.

Moments of Envelopes of Different Shapes

438. The moment of the envelope of an ellipsoid is expressed

exactly by the integral (370):

=e=v-- x--_-/

2wYlq 1=_-R]x_-cI- ¢ _ 1.

439. When x = x I, then



eo5

2 x3- y3l 2 x_ + xlyl+

env 3 17--IXi 2 2 3 17 X j_±
(IV_ 9 q _y_

Xl - Yl xl + Yl

440. This is the moment about the center plane (Fig. 30). We

find the moment about a plane N on the basis of equations (438) and

(439) ; we have

q(F l-F) (x+am) =M -M
env I env _

where _x denotes the distance of the center of gravity of the sur-

face of the end (Fl - F) of the envelope from the plane N; Menvl is

the total moment_ and Men v is the moment of that part of the envelope
from zero to x.

We have_ from this equation_

MenvN q (F I F) fhx Menvl Men v q (F I - F) x,

i.e., the moment of the end of the envelope about the plane N (Fig.

30).

441. This equation is applicable to any shape. In the case

of an ellipsoid, we find the moment (about N):

2 2
3 (x I - yl )
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F I and F are obtainable from (424) and (425).

442. In the case of an intermediate curve, the moment of the

envelope from zero to x about M will_ if we assume ds = dx approxi-

matel_, be equal to

2 7/4

env 7 4

The total moment about M will be:

4 2

Menv I 7 wqYlXl"

443. The moment of the end of the envelope F I - F about the

plane N is found, from (440); to be:

4 wqylx2 <I x2 _7/4: - -T) - q (FI - _) x.
MenvN 7

xi-

We find the difference (F1 - F) from equations (426) to (428).

444. For an elongated cosinusoid; the moment about the plane

M will be; approximately:

IIiJ
i
i

/
/
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= ...2x I --

Integrating by parts and determining the constant of integra-

tion in the usual way, we find

G
[ ___x. _ - _os •M = 4qylx I x sin 2x I

env

445. When x = x I, we have

Henvl= 4cLYlX21(l- _) "

To determine the moment of the end of the envelope, we h_ve

formulas (440) and (429) to (4_i) at OLL_ disposal.

oment of Lift Force for Envelo_

446. In the case of an _, we find _ (with

respect to the plane M):

2
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The total moment of the lift force

Mg as 4 Xl"

Here a is the specific lift force exerted by the filling gas.

447 . The total moment Mgas of the end UI - U relative to the

plane N is found from a formula similar to (440), viz.

Mgas N a (U1 U) Zkx Mgas I Mgas a (U 1 U) • x

where Ax is_ as above, the distance from the center of pressure of

the gas filling the end U I - U of the envelope to the plane N (Fig.
3o).

448. Thus, for an __ we find_ exactly, on the basis

of the last formulas mentioned and formula (433):

x 2

2El x2(
= waYl _ 2

x 2 2 x2 - -- )I =-6 22
3x].
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449. In the case of an intermediate curve, the moment of the

lift force from zero to x, relative to the principal cross section M,

will [cf. general formulas (371)] be expressed exactly by the formula

M =
gas 5

The total moment about the plane M (Fig. 30) is

= "rt 22
Mgasl 5 " aYlXl"

450. The total moment of the lift force about the plane N

may be expressed exact!y, on the basis of the last two formulas,

general formula (447) , and formula (435), by the equation

x5
1

' O-xT>'__ + 0-_ ...+.q_
1 1
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Since this formula may be used only when x < I_ the series
xI

will converge rapidly_ and consequently only the first few terms will
be needed.

451. In the case of an elongated cosinusoid, the moment of

the lift force about the plane M, from zero to x_ may be expressed

exactlz by the formula

452. When x = Xl, we obtain the total moment about M, viz.:

I

453. The moment about N from x to x I is found from the ex-
pression

+ _ sin

If the distribution of the weight of the hoops supporting the

envelope is proportional to the surface areaj the moment of the hoops

may be found as the moment of a surface of constant thickness.
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The momentsof the envelope and the lift force are an expres-
sion of certain forces which tend to destroy the envelope of the aero-
star and its frame. For the time being, we shall find only the
momentof an envelope of constant thickness. Actually, the envelope,
the hoops, and the longitudinal girders mayall vary in thickness,

so that their moments should be determined with that possibility in

mind. Clearly then, the problem of the moments can not be completely

solved in this chapter, since we are not now in a position to derive

the relation between the thickness of the envelope or the framing

and the corresponding spatial coordinates.

Aside from the envelope moments and the lift force, there is

one other force capable of exerting a crucial influence on the

stability of the envelope: the pressure of the gas filling the

aerostat, or the pressure (overpressure) at the lowest point of the

envelope. This pressure may be infinitely variable, while the

moments of the envelope of the lift force are dependent upon it only

to a very slight extent_ at least when the gas pressure is fairly

high. I deal with this aspect of the problem in the next chapter.
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IX. PRESSUREOFGASONCROSSSECTION
OFAEROSTAT.CENTEROFPRESSURE.

454. For brevity I shall refer to the difference between the
gas pressure and the air pressure at any point on the envelope of
the aerostat simply as the gas pressure. This pressure is ob-

viously the same for any horizontal plane. It depends on the pres-

sure at the low point B of the envelope and on the height of a

given point of the envelope above that low point (Figures 31 and 32).

As before (Chapter VI), the pressure at the low point B will be ex-

pressed as the length Y3 of a column of gas or of a tube or appendix
filled with the same gas as the aerostat. This tube is assumed to be

open at the bottom.

.......

Fig. 31.

455*. So long as the axis is not tilted, the pressure in

the direction of the longitudinal axis of the envelope will be the

same, namely y + y . The pressure at the lowest point of any cross

3 l

section will be y = y + y - y_ where y is the radius of the cross
2 3 I

section in question. The pressure at the highest point of a given

cross section wlll be F + y ÷ _.

3 1
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The pressure at a point whose height relative to the lowest

point of the cross section (Fig, 32) is y is given by the formula
z

Y + Y = y + y - y + y .

2 z 3 i z

456. In view of the symmetry of the pressure relative to

the longitudinal axis of the envelope, the total gas pressure* P

on any cross section of the envelope may be expressed quite simply,

since the average pressure over the cross section may be assumed

equal to the pressure along the longitudinal axis, namely

Y +Y .

3 1

Thus :

(Y +Y ).

3 i

457. The pressure on the principal cross section is

P = waYl2 (y + y ) •
i 3 i

* Rather, the total force.
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If we put y = y , then P = 2_ay3.

i a2 1 3, I 7.54y3.If we also put = 1.2 kjm then P = Fromthe last
I

formula we readily see that the pressure on the principal cross
section is proportional to the cube of the height of the envelope.

Fig. 32.

Formula (4_6) is the general formula in which y = F(x).

458. The pressure P is applied nonuniformly over the cross

section of the envelope and over the longitudinal girders, so that

the center of pressure lies above the longitudinal axis; but it will

increasingly approach this axis as the cross section diminishes, i.e.,

as we approach the end of the envelope.

The moment of this pressure P about the horizontal plane A

i

or B may be expressed approximately_ for the ends of the aerostat,
I

as:

,LIi ,,
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3
Py =_a (y + y ) y .

i 3

459. We can find the position of the center of pressure

and the magnitude of the pressure exactly for any cross section

through the envelope (Fig. 32). The differential of the gas pres-
sure on the cross section is

dP = a (y + y ) " 2zdy .
2 z z

In accordance with the equaticn of a circle

z = _ _ - (y - y )2.

z

460. We may therefore express the pressure in terms of the

integral

= )2.

z z z

Here (455) yields

Y2 = Y3 + Yl - y"
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This equation must be integrated with respect to y , assuming y
z

be constant.

to

461. Once this is done and the constants have been determined,
we have

w 2 2_ 2 3P= a _ (,7 + y )y - - (2_ - y )
3 i 3 z z

2 2

-(y +y ) _(y-y )&/ 2yy-y + y arc sin _y-_) ] } .
3 1 z z z

462.

pressure

For instance, if we put y = 2y, we obtain the total
z

2

P =Wa(y + y ) y,
3 l

i.e., the familiar formula (457), which we have rigorously proved.

When y = y, then
Z

P = a (y + y )y _ - y •

3 l 3
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Putting y = y = y , we find

3 1

through the envelope:

P for the center cross section

P = 2a_y
1

the pressure on the lower half of the cross section will be slightly

less than half the total pressure.

463. The differential of the moment M of the pressure

with respect to a horizontal plane passing through the low point

B of the cross section (Fig. 32) is, according to (459):

1

y dP : _y (y + y )_--j__ (y _ Y )2ay .
z z 2 z z z

iIntegrating this equation with respect to y and determining

the constant of integration, we have z

Z Z Z Z

1
The method 9f_ntegration is not described_ even though it is com-

plicated, inasmuch as it introduces nothing basically new.
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2
-y

Z

_"+ /

2 _ - Y-_)] - a #(2+ - :+2)3- y arc sin _i
Y Z

Z

_2 (Y5+ zl + Y) + _ (z - y ) ] •
z

464. When y = 2y, we find, for the total moment

Z

J y dP = a_y3 (Y3+ y + Y)"

But when y = y = y , we have for the center cross section

3 l

n L 4
_ y d P = 2- avy

z 4 I

465. Now, dividing the moment M of the total pressure by

the _alue of the pressure (462), we find

_=y l+ +yl) ,

i.e. 3 the distance of the center of pressure from the low point of
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the cross section B .

i

Since it is clear from the formula that this distance is great-

er than y, we find that the center will consistently lie above the

longitudinal axis_ or above the center of the circle. The same for-

mula also shows that the greater the pressure y at the low point of

3

the envelope and the greater the vertical dimension y of the en-

1

velope the closer together these centers will lie.

466. For the center cross section, we must put y = y in the

last formula; we then have i

r i n

Clearly, the greater the value of the ratio y /y of the

3 1

pressure at the low point of the envelope to the vertical di-

mension 2y of the envelope, the closer the center of pressure will
1

lie to the longitudinal axis.

467. Putting, for example, y = y we find

3 1

M=gy .
P 8 1

Once the position of the center of pressure is known, it is

not difficult to find the gas pressure on the two longitudinal

girders, assuming that the entire pressure is transmitted ex-

clusively to these members. For example, in the case considered



P

22O

here, the moment arms of the component forces are related as
9/8y to 7/8y

I I

Accordingly, the ratio of the arms will be 9/7. This means

that the lower component will be related to the upper in the pro-

portion of 7 to 9. When y = O, i.e., when the pressure at the low

3
point is zero, we have

M 5

I

and accordingly, the moment arms of the component forces will be in

the proportion of 5/4 y to 3/4y _ and the forces will be in the pro-

1 1

portion of 3 to 5. The upper force will thus be almost twice (1-2/3)

as great as the lower force. ClSarly, the ratio of the component

forces will be closer to unity at the other cross sections.

468. The general formula for the ratio of the component

forces is

1 + g(y_+ yl)

i - 4(y3 + yl) _Yl _i

The ratio of the moment arms of the forces will be the re-

ciprocal.

469. The mass moment of a narrow annulus of the envelope

defined by two closely spaced parallel cross sections is
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2_yqy ds,
z

where q is the weight per unit area of the envelope, and y is the
z

distance of the cross section from the plane about which the moment
is determined.

The momentof the other parts of the aerostat, included be-
tween the sameparallel cross sections, maybe designated as

Pyd .
z z

470. The momentof the lift force exerted by the gas at
the samecross section will be

2
awy y dy

z z

If the loads and massesare so distributed that the total
momentat any cross section is equal to the momentof the lift
force at that section, then these opposing forces will cancel out
and, by studying the longitudinal pressures acting on the envelope
and the girders, we shall be able to exmuine the effect of the gas
pressure alone. In this particular case we shall be free to ignore
the momentsdue to gravity and the lift force exerted by the gas.
The middle part of the aerostat maybe so designed, but not the
ends, which would then be too thin and fragile for practical pur-
poses.
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X. A SURVEY OF TKE PRINCIPAL FORCES ACTING ON TEE ENVELOPE

OF THE AEROSTAT; THEIR INTERRELATIONSHIPS

Longitudinal Forces

471. In view of the corrugated design of the envelope and

the variation in its volume and shape, the tensile force in the

longitudinal direction will evidently be highly variable, so

that there will be some doubt as to the safety factor.

The longitudinal forces tending to destroy the aerostat must

be resisted by the longitudinal girders alone. Thus, in studying

the longitudinal forces I shall neglect the role of the envelope and,

for the time heir5, consider only the four longitudinal girders

(Fig.1 and Fig.6).
Any cross section, for example_ AB (Fig. 31), will be acted

upon by the following principal longitudinal forces:

a) the weight of the envelope, which will produce the

moment of the envelope;

b) the weight of the longitudinal girders, hoops (which

may be regarded as integral with the envelope), gondola, machinery,

passengers, and cargo; the action of these forces will also be

expressed as moments about the cross section under consideration;

c) the lift force of the gas acting in the opposite di-

rection, a factor which we have already discussed in some detail;

d) the gas pressure at any cross section; this force

depends on the degree of inflation of the envelope.

472. The first of these forces (gravity) places the upper

pair of girders in tension and the bottom pair in an equal state

of compression; the second (lift force) has the opposite effect,

i.e., it produces a compressive stress in the upper girders and a

tensile stress in the lower ones; finally, the gas pressure tends

to place all the girders in tension.

Designating the moments of these three forces as M , MG, andT

MB, respectively, we find that the upper girders are acted upon by
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the resultant

M T M MB M T - M + MB
__ _i+ __ = g

2y 2y 2y 2y

where y is the radius of the cross section_ and M is the moment
B

of the gas pressure relative to a horizontal plane passing through

the point A.

473. Likewise, the force acting on the bottom girders will be

expressed by the formula

Mg MA +Mg +MA_MT + +

2y 2y 2y 2y

where MA is the moment of the gas pressure relative to B.

474. For the middle parts of the envelope at some distance

from the ends, the moment of the envelope may equal to the moment

of the lift force of the gas, i.e.,

M =M
T g '

so that we shall then have to deal only with the tensile force pro-

duced by the gas pressure. But this does not apply nearer the ends

of the envelope; there the moment of the lift force will be
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negligible compared to the moment of the envelope (Chapter IX).

Actually, the weight of the conical surface which terminates the

envelope is proportional to the square of its linear dimensions,

while the volume of the gas it encloses is proportional to the cube

of the same dimensions. As a consequence, a decrease in the lift

force will be realized much faster by reducing the surface area than

by reducing the _eight of the cone.

475. Neglecting the lift force of the end sections of the

envelope, we find that the upper girders will be acted upon by a
force

%
2y

and the lower girders by a force

- M T - MA

2y

The first of these forces is always positive, so that it can

only place the girders in tension; the second, on the other hand,

may be either positive or negative, depending on the circumstances.

If the moment of the gas pressure is greater than the moment

of the envelope, it will produce a tensile stress in the girders;

otherwise the soft or thin and flexible envelope will sag, and the

ends will droop downward forming irregular folds.

476. The resultant for the conical ends of the envelope

may be derived from the above complicated formulas, but it is

simpler to take an independent approach (Fig. 31, left).

The gas pressure on the cone [cf. formula (462)]
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2
P_a(y +y) y ;

3 l

the moment of this pressure about A or B:

3
M ='rra(y + y )y ,

g 3 1

which, by the w_y, is directly evident from formula (464), where

the quantity I/4y, being relatively small, may be neglected.

477. The weight of the conical part of the envelope

where i is the generatrix, and y is the radius of the base.
g

Its moment about points B or A will be:

h

- ;
MT = q_ylg 3

but

h =l cos
g
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and

y _ I sin _,
g

where _ is the angle formed by the axis of the cone and _ts genera-

trix. Accordingly,

Mg = wa(y 3 + yl) 13 sin 3 _,
g

3
M = - • ql sin _ cos _;

T 3 g

the ratio of the moments is expressed by the formula

M 3a (y3 + Yl )
___g=

M q cos
T

2
• sin _ .

478. Clearly_ this ratio will increase with the pressure at

the lowest point Y3 of the envelope, and vary inversely with the

weight of the conical surface q. _nen y = YI'
3

M 6ay

g = i sin 2 _.

M T q " cos
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Here the angle _ may be found from the derivative dy/dx,

since

= arc tan < _

where x = x .
1

Under ordinary conditions, and even when the aspect ragio of

the envelope is considerable, the ratio of the moments will be greater

than unity, and therefore even the ends of a soft envelope will not

sag.

479. Formula (477) may be recast in the form:

M 3a(Y 3 )___2g +Yl

q I+ x9

that

If the elongation is considerable, we may assume approximately

M 3a 2

M_ q " (Y3 + Yl )
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480. go far, we have not considered the weight of the frame-

work of the gondola and the live loads or their moments.

These loads are proportional to the length; thus the moments

are approximately proportional to the square, while the moment of the

gas pressure is proportional to the cube of the linear dimensions of

the cone; consequently, if the cone is sufficiently small the mass

moment will exceed the moment of the gas pressure, and then the en-

velope would sag, were it not for its rigidity and the rigidity of

the longitudinal girders and other possibl _ framing in the conical

ends of the _nvelope. Accordingly, we may even neglect the gas

pressure, and base the calculations exclusively on the strength

of the rigid parts of the envelope.

481. Moreover, if we consider that the shape of the aerostat

not only departs from that of a surface of revolution (Figures l, 2,

3), but has an intermediate section in the form of an elongated

cylinder fFig. l, Fig. 2), then the moment of the gas pressure at

the ends will be approximately proportional to the square of the

linear dimensions of the cross section, just like the moment of the

girders, and so forth. Consequently, the gas pressure may even

cancel out the dead weight of the framing, if the members are

reasonably light and the central cylinder (Fig. 2) is sufficiently

wid e.

482. Referring_ for the time being, to my early scheme for

an airship carrying 200 passengers (Fig. I), I shall present a few

figures to illustrate the relations between the forces acting on the

envelope of the aerostat.

For the sake of simplicity, let us assume that the load at any

cross section corresponds to the lift force; then the effect of the

gas pressure will b_ most apparent. But what force will it exert on

the four longitudinal girders?

To solve this problem, we can make use of the simple formula

(456), putting Y3 = y " We obtain
i

2

P = 2Way y ,
i

or, taking into account the equation of the generatrix
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x2

we have

P=2_a
i

i

You may remember that y , the radius of the principal cross
I

section, is 15 meters and that the length of the aerostat is

2 x = 210 meters; I shall use the round figure of 200 meters and
I

assume that a = 0.001 ton per cubic meter (where a is the

specific lift force of the gas, in tons per cubic meter).

483. We now calculate P, the pressure acting on the four

longitudinal girders, in terms of x and y (Table 3).

TABLE 5

x_ meters

y, meters

P, tons

0

15

21.07

20 40

14.4( 12.6_

19.36i14.95
i

__ __ ]

5o

11.25

ii.801

6O

9.60

8.64

7O

7.65

5.48

8O

5.40

2.74

9o

2.85

0.76

i00

0. O0

O. O0



It turns out that at the center the pressure exceeds 21 tons.
Even I0 meters from the end of the envelope, where the radius y is
less than 3 meters, the pressure is 760 kg.

484. In computing this pressure, I assumeda circular cross
section and paid no attention to the wi@th of the center longitudinal
strip (Fig. 2). But this last factor cannot be ignored, particularly
at the ends of the envelope.

The area of the additional rectangular section (Fig. I and
Fig. 2) is 2yb, where b is the width of the section; on multi-
plying this area by the average gas pressure at the longitudinal
axis, a(y + y ), we arrive at the total supplementary pressure

3 1
on the four longitudinal girders: 2 ab(y + y )y or, taking

3 I I

into account the equation of the generatrix:

f 2 _

2aby(y + y ) t,.1- 2
i 3 I x2

i

Putting y = y , we have

3 l

2 x2

4abYl_l x2_= 4aby y'I

i

485. Thus, for x = i0 meters we have y = 2.85 meters, and

the supplementary pressure will be 171 kg for a width b = I meter.

As we approach the ends of the envelope_ the relative in-

tensity of this supplementary pressure will increase to the point

where it completely predominates.

Nevertheless, if a gallery is designed to run the full length

of the envelope or machinery is located near the ends, it would be

impossible to rely exclusively on the gas pressure, since in this

case_ the moment could not balance the moment due to the dead load.

We must then consider seriously whether the ends of the envelope and
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their framing can withstand the resulting compression. Detailed

calculations would be somewhat premature at this point; accordingly,

I shall first turn to the transverse circumferential tension in a

direction at right angles to the longitudinal axis of the aerostat.

Transverse Forces

486. If the aerostat is elongated and the longitudinal ten-

sion is weak, a narrow strip between two adjacent cross sections may

legitimately be treated in isolation (Fig. 15).

We have found (159) that the gas pressure on unit surface

area of the envelope is a(y + y ). If, for instance, we wish to

3

know the pressure at the highest point of the center cross section_

we insert in that formula, a = O.001, y = y = 15 meters, y = 2y =

3 I I

= 30 meters; we then find 3 ay = 45 kg per square meter of envelope

i

surface.

487. Assuming a circular cross section (Fig. 31, 32), we

obtain the following expression for the transverse horizontal pres-

s U.I_e :

j a(y+y )_y
2 z z

= _ 2 a 2a (y+Y )2___. Y ; _ (2yy +y )= ay (y+_),
2 2 z 2 2 2 2 z z z 22

where, according to formula (455):

y =y +y -y.
2 3 !
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Thus

)
(Y3 + -

)ay(y + Y_--: ay Yl Y + y_-
z 2 2 z 2

where y is the radius.

488. For the total pressure y = 2y, so that we get 2 ay z
Z

(y +y).
3 1

For the center cross section y = y # so that we end up with
I

2ay (y + y ). When y = y _ the pressure will be 4 ay 2. The width

I 3 l 3 1 1

of the cross section is taken as unity.

489. The total pressure on the principal longitudinal

section through the envelope may be expressed as the average

pressure along the axis a(y + y ) multiplied by the area of that

3 I
section (378).

490. The moment of the transverse gas pressure about the

low point is given by the formula

C

_ (y + y )y .dy
2 z z z }

491. For the total moment of the pressure_ putting y = y, we

find : z

l]l
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_y2(y + 4/3y),
2

but since

y =y +y -y,
2 3 I

then

2

--_y(y +_ +z/3y).
3 1

492. Dividing this last expression by the pressure (488),

we obtain the distance of the center of pressure from the low point

of the section:

Y " (Y3+ Yl + J3y)
1 ----

(Y +Y)

3 1

Clearly, the center of pressure lies slightly above the

longitudinal axis of the envelope, but the closer to that axis the

smaller the v_lue of y relative to y , or the closer the section
1

to the end of the envelope.

493. For the center section y = y ; again putting y = y

1 3 1
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we find that the distance to the center of pressure will be 7/6y ;
I

consequently, the ratio of the upper componentof the pressure to the
lower componentwill be as 7/6 to 5/6, or as 7 to 5.

Under the sameconditions, the distance to the center of the
longitudinal forces will be 9/8y , i.e., slightly less (by 1/24y ).

1 1
494. If in the last formula we put y = y and y = O, i.e._

i 3

at the center section, we shall find that the center lies at a

distance 4/3y above the lowest point, that is, again above the

1
F

center of the longitudinal forces (5/4y), this time by 1/12y .

1 ±

495. There is a possibility of carrying out a more exact

investigation of the transverse forces acting on a strip of the

envelope (Fig. 15).

Imagine that the strip slides (or is positioned) over

frictionless pulley blocks. It is clear that the tension would be the

same over the entire length if the strip were weightless. Because of

gravity, the tension in the direction of an element of the curve will

be equal to some constant plus a function of the weight of the under-

lying portion of the envelope. Clearly_ then, the minimum tension

will exist at the low point of the envelope. This tension will in-

crease continuously with the length of the element of the curve, and

will attain a maximum at the high point of the envelope, at the

height h

Clearly each element ds of the envelope, weighing qds, adds

an amount qdy to the tension. The tension on the envelope at any

point may therefore be expressed by the integral

P

qdy + C = qy + C,

where C is the constant stress when y = O.

Clearly, the tension on two elements of the envelope located

at the same height y will be identical.

If the tension C at the high point or, in general, at any
1
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point, is known, the height of the point being h, then the tension

at any other lower point will be C I -- q (h - y).

496. We can get an idea of the tension in the depression at

the top of the envelope (Fig. I), where it forms an angle 2_, from

the magnitude of this angle and the corresponding load, assuming that

the parts of the gondola are unconnected, or sufficiently flexible,

or hinged. The greater the load and the larger the angle 2_ the

greater the tension. It is not difficult to derive a formula for

the tension C in the depression. Thus,

P
C _ m '

2 cos O_

where P is the part of the load acting on a given strip of the en-

velope.

Thus, the tension at any point will be given by the formula

P

2 cos
q (h - y),

where h is the height or ordinate of the apex of the angle formed by

the depression. For example, at the low point y =. O, and the tension
will then be

P
qh.

2 cos

Since the curve at any cross section can easily be drawn (see

Chapter VI), there will be no difficulty in determining h and a, so
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that the value of the tensile force can always be found.

497*. We have seen (Chapter VI) that the tension on an element

is composed of two forces_ one horizontal and the other vertical. The

first is independent of the weight of the envelope (162) and is ex-

pressed by the integral

t z = _ aydy = __a . _ + C.
2

If we apply this last equation to a vertical element of the

Curve whose ordinate is (h I = y3) (Fig. 15), the horizontal component

tz will vanish_ so that we have

2

A (h I + y3) + C = O.tz= 2

Eliminating C from this equation we find

a _ y2].tz = _ [(hi+ y3)2

498. This formula renders possible an exact determination of

the tension at the low point of the envelope. Thusj putting y = b_
we find

tmin = - ahl(_ + ¢ •
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The tension on the highest element of the curve is found by

putting y = h + Y3 (Fig. 15):

a (h - (h+ hI + )tz_=+ _ hl) 2Y3 .

The different signs indicate that the tensile forces act in

opposite directions.

499." The ratio of the maximum tension to the minimum tension:

tma x (h - hl) (h + h I + 2Y3)

tmi n hl (h I + 2Y 3)

This ratio must always be greater than unity, according to

formula (495) above, so that, when Y3 = O:

h2 - h_
<I

and when Y3 = _

h - h I

h I
--<I;

whence
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h hi I
--<2 or _ >_.

h I h 2

500. Equation (163) shows that once the derivative dy/dz and

the tension t in the z-direction are known, we can always find the
z

tension ty in the y-direction. Once both components are known, it is

easy to find the resultant, or the tension in the direction of the
element ds of the curve. This will be:

I I <i>=t2 + t2 = t l + = t • --
z y z z dz"

501". The derivative in this equation is determined using

formula (173), but an even simpler approach would be to eliminate

ds/dz directly with the aid of fonmula (191).

Constants C I and C2 are expressed in equations (181) and (182).

Finally, we find t using equation (497).

After all t_is, we get

d__-_2q (h....- 2y) - ah (h,+ 2y5)+ 4_5

dz 2a (y2 . y_) _ ah (h+ 2Y3)+ 2qh

and

ds

dz

aI2q (h-2y)-ah (h+2y3)+ 4_ 31 [02-_)-h I (hl+2y3)I

_. (y2 _ y_) _ 2_ (h + 2y3)

I ill l
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502. If the curve is weightless, q = O, and we have

ds

z dz

-ah (h+ 2y3) [(# -y_)-hI (hl+ 2Y3)]

4 (y2 _y_) _2h (h+2y 3)

In view of the weightlessness of the curve the value of this

expression must be independent of the ordinate. This is confSrmed bY

formula (189) relating h I and h.

503. These formulas may be verified in a simpler fashion.

Let us put Y3 = 0 in the last equation; this means that the pressure

at the low point of the envelope is zero.

We then have

ds

z dZ

_ah2 (y2_h_)

2 (2_ - h2)

Recalling the relation between h and h2_ when both q and Y3

are equal to zero (189)# and eliminating h, we find

ds -ah_

t • -
z dz 2
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which is also clear from formula (498)_ when we put Y3 = 0.

504. In fact_ if we verify (502) by eliminating h by means

of (189), we obtain

t -- = - ah I + Y7z dz

i.e._ formula (498). Hence we see that in this instance_ i.e.,

when the curve is weightless (q = 0)_ the tension is in fact inde-

pendent of y_ or constant over the entire curve.
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Xl. MODIFICATION OF THE COMPONENTS OF A METAL AIRSHIP

The general character of a metal aerostat will be clear from

my earlier writings (of. "A Simple Study of the Airship" [Prostoye

uchen_yeo vozdushnom korable]) and from a reading of Chapter V of

this book. But significant modifications may also be made in the

general design of a gas-filled airship. These craft are capable of

surprising variety. In this chapter I shall attempt to evaluate the

advantages and disadvantages of various types of components.

Various Aerostat Systems

505. This is a very elegant system (Fig. 33). One could not

possible discern its quality simply from the diagram, however, since

this drawing, like all the others in Chapter XI, is only schematic,

i.e., the scale varies in different directions and for different

components. The advantages of this system over those described

earlier are as follows.

Fig. 33 Fig. 34
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a) Simple design of the gondola without exterior chains

of complex design.

b) Reduction of drag, since all the chains are enclosed

within the envelope.

c) Reduction in the total height of the airship.

d) Elimination of certain vibrations of the gondola.

e) Greater accessibility of the aerostat, particularly

the joints.

f) Short distance between gondola and envelope.

g) Elimination of movable parts of black heating tube,

and in general of parts transmitting vapors and gases.

h) Considerable stability of longitudinal axis of the

aerostat, as a result of placing the propeller at the end of the

envelope, thereby reducing the work of the regulator designed to

preserve the horizontality of the longitudinal axis (horizontal

control surface and longitudinal displacement of the gondola).

506. Calculations show that such a system is entirely real-

zable_ but the opposite side of the coin must also be displayed, i.e.,

the reader must be acquainted with its shortcomings. These are:

a) Lower efficiency of the propeller, since the reverse

air flow generated by the propeller will exert pressure on the en-

velope in a direction opposed to its motion; this unfavorable pres-

sure will be relatively greater than in the case of a steamship,

since in the latter instance it is possible to taper the stern of

the ship and carry the propeller out beyond it.

b) Extra load on the ends of the longitudinal girders,

making it impossible to use very powerful engines or a heavy pro-

peller. If steam engines were used as a means of propulsion, the

steam would have to be supplied from a considerable 4istance, viz.,

from the middle of the gondola.

c) The center of gravity of the gondola is too high.

d) The need for artificial tensioning of the envelope by

means of interior chains strung between the longitudinal girders,

which in turn re%uires heavy and complicated construction and con-
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siderable work.

507. Thus, even though this system is quite attractive and

presents some definite advantages, it still has certain shortcomings.

One of these_ for instance_ is the problem of tightening the chains,

without which it would be difficult to achieve stability of the

longitudinal axis. It is true_ of course_ that even when exterior

chains are used and the envelope is tightened by the weight of the

gondola_ there are still quite a few complications to contend with.

I shall return to the tensioning system in due course.

508. The system described here can be modified in such a way

that one of the more serious flaws is eliminated, and another

partially offset_ but at the expense of making the airship more com-

plicated and impairing the elegance of the design.

See Fig. 34. Here the design is a mixture of two extremes

(Figs. I and 33). The tops of the center chains have a fixed support

on the longitudinal axis of the envelope. The center chains, by

which the gondola is suspended, are shown slightly out of the ver-

tical owing to the action of the propeller. They must be free to

slide freely up and down through slots in the envelope base and to

deviate from the vertical position in response to the propeller

action. Each chain has its own special slot. These slots are

hermetically sealed by means of sliding plates (Fig. 35a).

In this design_ the pressure on the propeller is applied more

or less to the nose of the envelope_ or to some other point on the

longitudinal axis. Thus, an important advantage of the previous

system (Fig. 33) is retained, while three crucial disadvantages are

eliminated (viz._ a_ b, d): the propeller is placed where it

really belongs, so that it does not generate a backflow of air that

could add to the drag; the other disadvantages eliminated are the

overloading of the ends of the longitudinal girders and the impos-

sibility of utilizing powerful engines.

509. Moreover, the work done in tightening the chains would

be halved_ since the middle of the envelope is tightened naturally

-- by the weight of the gondola and the loads it carries. Some of

the passengers could be housed there, and others higher up, in a

gondola directly adjacent to the envelope and suspended from the two

bot_[m girders; as in the previous system (Fig. 33).

The horizontal trim of the aerostat could be regulated either

manually or automatically, by displacing the center of gravity of

the bottom gondola with the aid of an inclined cable (Fig. 34). The

motion of the propeller and the variations in propeller speed will

have almost no effect on the horizontal stability of the longitudinal

axis, provide{the chains are not allowed to reach the edges of the
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slots.

510. There can be no longitudinal bending of the chains_ be-

cause they ride freely in the slots, but transverse bending due to

transverse oscillations of the gondola out of step with the oscilla-

tions of the envelope will be unavoidable.

a

c

b

d

Fig. 35

This is a further disadvantage as compared with the preceding

I
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system: the center of gravity lies high_ so that the distance be-

tween it and the metacenter will be small*. Another disadvantage is

the additional complexity of the design. Fig. 35a, for instance,

shows the design of the longitudinal slots and their cover plates.

The chains need not be cylindrical, but may be irregular in

shape, or may even consist of elliptical links like ordinary chains;

but then special sleeves would be required, such as shown in Fig. 35 b.

In any case, the top of the chain would still have to be smooth and

cylindrical.

511. This design has one further considerable advantage over

the previous one. Small changes in the volume of the envelope are

possible even without paying out the end chains_ since the chains in

the middle of the envelope are not connected to the bottom longi-

tudinal girder_ so that at this point the volume of the gas bag can

vary within a certain range.

512. The mechanism depicted in Fig. 35a and Fig. 35b can be

simplified as indicated in Fig. 35c and 35d.

The last of these drawings shows a chain made up of irregular

links. The chain passes through a short sleeve, whose length ex-

ceeds that of the link itself; finally_ a gastight apron extends be-

tween the edges of the sleeve and the edges of the slot. The sleeve

and apron are held in place by a device, not shown in the diagram,

which always remains inside the envelope.

513. Were it not for the difficulty of artificially ten-

sioning the envelope by means of chains_ I could recommend a system

simpler than the preceding one. The new system_ as is clear from an

inspection of Figs. I and 36, is reminiscent of our basic design

(Fig. I), but differs in that all the chains can be placed in tension

artificially_ when the need arises.

Here_ as in the basic system (Fig. i), the propeller develops

a couple, which tends to rotate the aerostat in the vertical plane_

raising the nose; but_ as I pointed out_ this couple is readily

balanced, on the basis of my calculations_ by a small displacement of

the center of gravity of the gondola using the diagonal tie.

514. A strong feature of this system is the fact that the

_s the bottom gondola is placed, as it were_ on the longitudinal

axis of the envelope.
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length of the exterior chains remains unchanged, despite changes in

the volume of the gas_ so that each chain can consist of a single

link with hinges at the ends. Another advantage of the system is the

resulting stability of the lower gondola. Some inconvenience again

results, however, from the artificial tensioning of the envelope and

the location of the passengers high up in the top gondola.

Were it not for the tensioning problemj this design would be

one of the best. Accordingly, in view of the crucial importance of

methods of artificially tensioning the aerostat envelope and the

associated difficulties, I shall proceed to describe and evaluate

certain approaches to this problem.

Tensioning b_y Pulleys

515. Let us begin with the most practical approach: tension-

ing of the chains by means of pulley systems. These are indicated

in Fig. 37. The force required to place any chain in tension is in-

versely proportional to the number of pulleys in the pulley system

used to provide the tension. It is advisable to keep the number of

wheels in each pulley system down to about ten_ in order to avoid

exerting heavy longitudinal forces on the bottom girder. If these

forces are moderate, they could even contribute to the stability of

the girder. Actually, as may readily be seen from the drawing_ the

two groups of longitudinal forces act in opposition to each other,

toward the middle of the girder. These forces counteract the pres-

sure exerted by the light gas_ which tends to stretch the girders.

516. The pulley wheels will have the smallest diameter when

ropes of some flexible but strong natural fiber are used as tackle.

The pure_ dry hydrogen inside the envelope of the aerostat would

never harm these fibers. If ordinary chains are employed_ the

diameters of the pulley wheels will have to be larger. As for using

wire cables, their flexibility increases as the strands become

thinner, so that in this case the size of the pulleys will depend on

the cable structure.

To turn the drum on which all the ropes are wound (Fig. 37),

a machine giving a mechanical advantage of ten will be required.

At any lower value the tensioning process would be irritatingly slow.

517. The advantages of this system of tightening the en-

velope are as follows:
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Fig. 36 Fig. 37

a) The tension applied at the different cross sections
of the envelope maybe subject to somespecific law; for example_
the force maybe madeto decrease in proportion to the cross-sec-
tional area of the envelope toward the ends.

b) The longitudinal girders, can be brought arbitrarily
close to one another -- even almost to the point where the upper
girders meet the lower ones.

c) Increased stability of the lower girders, as men-
tioned earlier.

d) Arbitrarily small force required to apply the neces-
sary tension, since the force will depend on the numberof pulleys
used.

The disadvantages consist in a certain added complexity and
the increased cost of the system. It is clear that the tensioning
could just as well be achieved by someother block and tackle system,
e.g., differential pulleys.

There is another tensioning system which is highly attractive
for its simplicityj but advantageous only where the maximumnecessary
change in gas volume is extremely small (Fig. 38). The tensioning
action is concentrated at one end of the envelope. Whena consider-
able change occurs in the volume of the aerostat, which is sometimes
necessary in practice_ the pressure on the longitudinal girders will
be so enormousas virtually to eliminate all prospects of utilizing
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this simple design. Moreoverj this method of tensioning or; more ac-

curately; bringing the parts of the envelope closer together; does not

produce a contraction proportional to the size of the cross section;

on the contrary, tightening will be a minimum at the middle of the

envelope and increase toward the ends.

Fig. 38 Fig. 39

518. This last shortcoming can be eliminated by making a

slight change in the original design. Thus, in Fig. 39 the tension-

ing reaches a maximum at the center cross section of the envelope.

In general, by varying the length of the links (or rods), we can

regulate the tensioning at will.

519. This method could be utilized more readily as a supple-

ment to the system shown in Fig. 34. In this case the tensioning is

applied simultaneously at both ends of the envelope (Fig. 40). Here

most of the work is done naturally: by the weight of the suspended

gondola; the fraction accounted for by artificial tensioning is less

than half; and it is distributed between both ends of the aerostat.

Consequently, the pressure on the girders is reduced to no more than

one-fourth that obtained in the previous design (Fig. 39). Yet even

with this airship system (Fig. 40); we find that preference should

perhaps be given to a pulley tensioning system (Fig. 37) which can

only add to the strength of the longitudinal girders.

520. In fact_ the principal inconvenience encountered in

applying the tension in the last three systems mentioned (Figs. 38,
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39, 40) consists in the enormous longitudinal compression experienced

by the girders, which, even though opposite in direction to the ten-

sile stress developed by the gas_ may exceed the latter, which is un-

conditionally and always true at the ends of the envelope. Actually_

as the distance to the ends of the envelopes diminishes, the smaller

the gas pressure tending to put the girders in tension_ whereas the

compressive stress due to the envelope tensioning forces will in-

crease, in the first two systems_ from the right end of the envelope

to the left s where it reaches a maximum and inevitably crushes the

girders. In the last system (Fig. 40), a compressive stress will

develop at both ends and only the middle of the girders will be un-

affected by the tensioning forces.

Fig. 4o Fig. 41

521. Fig. 41 shows how we can arrange things so that both

ends of the envelope are free of the longitudinal compressive

_resses and so that these stresses increase from the ends toward

the middle, like the tensile stresses exerted by the gas pressure.

This is a highly advantageous design, as our calculations indicate,

but it also has its Achilles heel.

The application of tension by means of a multi-block pulley

system (Fig. 41) is very convenient: it can be done from either

end of the envelope or from any point on the side or bottom (Fig. 41).

The force required to apply this tension is negligible_ because of

the large number of pulleys employed_ and therefore will not endanger
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the shape of the envelope, even if the pulley rope runs vertically.

The real difficulty is that this system will not stabilize the longi-

tudinal axis of the aerostat. In fact, any deviation of the axis

from the horizontal will tend to inflate one half of the envelope

and deflate the other, the second half losing volume to match the

increase in volume of the first half (if the aerostat is not

severely tilted); the center of the lift force of the aerostat will

be displaced horizontally, and the inclination of the axis may grow

even worse. In order to achieve stable equilibrium both ends of the

horizontal connecting chain (Fig. 41) will have to be lengthened,

run outthrough the ends of the envelope, and fastened there; then

there will be no horizontal displacement of the connecting chain

and pulleys_ and no displacement of the center of the lift force.

Fig. _2 Fig. 43

Here the tensioning and relaxation of the ends of the longi-

tudinal chain (Fig. 42) must be carried out simultaneously and ac-

cording to calculations. In general_ this system is by no means as

simple as it appears at first glance.

522. Nevertheless, it is worthwhile considering this system

seriously, for it makes possible the displacement of the center of

the lift force in the horizontal direction. The gas volume under-

goes almost no change, because ordinary pulley tensioning is not

used and the distance between the blocks remains the same as before;
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while the horizontal chain is displaced to the right or left_ with

the result that the center of the lift force is displaced likewise.

The displacement of this center is a powerful means of dealing with

any tendency of the longitudinal axis of the aerostat to deviate from

the horizontal.

523. The center of the lift force can be displaced in the

design of Fig. 40 also_ provided the distance between the blocks is

shortened on the right_ and increased by the same amount on the left_

or vice versa.

524. Fig. 42 shows an arrangement of the chains for dis-

placing the center of the lift force in a system where the envelope

is placed in tension by natural means_ i.e., by using the weight of

the gondola (Fig. i).

525. Fig. 43 illustrates another notion on applying tension 3

where there is no need to fasten the connecting chain at the ends of

the envelope; this system does not stand up to criticism_ however.

Actually_ it is not bilateral_ with the righthand chains reacting

against those on the left; here each half of the chain system re-

acts against the lower girder. The vertical component of this force

tends to lift part of the girder. This force is tremendous and

variable, so that it cannot be balanced by the constant gravity

force.

Screw Tensionin_

526. The envelope could also be placed in tension by means

of screwsj as shown in Fig. 44. The drawbacks of this approach are:

a) high friction;

b) heavy weight of screws;

c) twisting of screws;

d) difficulty of turning screws simultaneously;

e) prevention of twisting of upper pairs of chains or

braces.
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Fig. 44

Devices Used in Gravity Tensionin_

527. As we saw from Fig. I, this natural method of applying

tension requires special devices to keep the longitudinal axis of

the aerostat horizontally stable. Some of these devices have al-

ready been described in my earlier writings (cf. "Simple Study of

the Airship" and "The Metal Dirigible").

J

I

_j\ /

Fig. 45
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Figs. 45 or 46 illustrate in schematic form the most elegant
of these devices.

As the volume occupied by the gas increases, the chains are

drawn into the envelope simultaneously and symmetrically about the

plane of the center cross section. There is no need to worry about

the irregular expansion or integrity of the envelope, so long as the

volume does not approach the maximum, where the aerostat assumes the
shape of a surface of revolution (neither the supports of the wheels

nor their teeth are shown in the drawings; the chains are shown

smooth).

E

Fig. 46 Fig. 47

The chains running over the toothed wheels and the chain

portions of the vertical rods may take the ordinary form, i.e.,
they may consist of an alternating series of mutually perpendicular

elliptical links (Fig. 47).

Any gas leakage through the chain openings can be prevented

by means of the device depicted in Fig. 35"0, except that the sleeve

will point downwards, i.e., lie outside the aerostat envelope (Fig.

47).
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The chains must be prevented from slipping off the wheels by

means of special rollers or grooves.

It is clear from the foregoing that the mechanism is far from

being as simple as the apparent elegance of the basic design led us

to believe. However, the chain system in Fig. 46 is simpler;

simpler still is the method used to seal in the gas when smooth rod-

chains are employed (Fig. 9)- In any case, it would be foolish to

trust to this device before it has been tested in actual practice.

528. Something more elementary is depicted in Fig. 48, which

shows the envelope from below, or a plan view of the parts of interest.

Here on emerging from the envelope each series of smooth chains (Fig.

9) is gripped on both sides by a simple locking device. The action

of this device makes the vertical chains integral with the lower

longitudinal girders (Fig. 48 top).

Fig. 48

Reversing the locking movement disengages the chains which

are then free to travel into and out of the envelope (Fig. 48 bottom).

529 . The chains are usually locked in this way to the lower

longitudinal portion of the envelope. But if the gas is under high

pressure and tends to expand the envelope, which will always be ap-

parent from the visible bulge near the lower girders, the locking de-

vices (Fig. 48) are briefly operated to free the envelope from the

vertical chains. When the envelope has expanded to take on its

natural shape, which will be apparent from the absence of convexity

or concavity at the lower girders, the chains are locked again (Fig.
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48 top), so that the horizontul stabili_ of the iomgitudimml _s is
secm_e_.

of the envelope _7 occur, i.e., there _7 be an u_alanced (as/smet-

rical} mDve_ent of the chai_s resultin_ in hor£zomtal d_spL%c_men% af

the center Of the lift loire, so _t t_ airship tilts. _b _oid

this, the _uTer must be execute4 quick1_ and imme4iatel_, while

hhe longitudinal axis is hnrizomtal; this cam alwm_s he check_l

_,min_t the re_ of a s,ensitime lemeL

_31. For even grea_er sec_rit/_, ome group of werhical chaims

(Fig. i) may be diseng_ge_ ,or freed first amd, omme that gro_ has

h_em secm_e,_, we ,c,_nproceed _o the other, them back to %_e firs%,

_ so on, _til _he ezwelope h_s s_fficiemtl_ ___. I_ %_h_s

c_se, _ two p_r_llel se_es of _e_[e_l c_im_ _ 9_ _pend

_o_la cou_a be particulsrl_ _efkml.

When the ,i_as pressure is io_ a_d the airship a_aim is im

•_r Of l._sing horizom,%_l _bilit_, the ch_i_ are _ dis-

e_gs_ed fins= the ez_meL0pe ms des,_rihe_, either s_zce:ssi,_el_ er_ if

p_ssible= all _og_e_her, So %_mt _ emmeIDpe rides _p the ch_ims mm_

as_u_es its normal _hape.

If ,mo_e or e_en _,_l of the lock_ devices _h_id f_ii to em-

g_e in the recesses i_ the li_k_ of the _ertical chai_s, a _li_

_ibrati_m of _he _erostat <or hhe ._ene_al ezlyam_iom or comtr_ctl_m of

the es_,lo_ will zor_ecZ the situation. _s ,_ l_st ___oz'_,

aer_tat could safe%y he br_zht _wm om a fL_t s_rf_e im order to

elimiz_te _ e_ce._ .or l_ck of _ _pme_mme _ r_m_ore hhe mo_i

_Bape of the envelope. _er, e_em if _he _urface 15 _ flat_

the gomdo_._a co,_Izl _still be _cormect!_ _i_ted l_y _ of a lewel

s_ _r ch_im_s of _if_ement l_mgth, it _I_ _t he f(or_ot_em

that the rece_e_ lie im the im_erme_i_te, _er_ _h_r_ mm_ s_m_

limk_ so that the chaims cam _wing _ith_t beimg g_ged _eter

they hate heem secured {,cf. (i_I)].
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of the longitudinal axis of the envelope. Therefore, this auxiliary

system can be extremely _ an_. can_Qt even be compared with the
otherwise similar system employed for artificial tensioning of the
envelope.

533, A naturailtensioning system could also be secured in

accord_sa_c9 iWlth Figs. 37 to 43. The' p_liey systems shown in Fig. 37

and Fig. _3'are to be preferred. The 'pulley System is preferable be-
cause the securing of the tensioning cables can easily be adapted to

the degree of tension applied.

Does a Gravity Tensioning System Have to be Secured?

534. We have discussed certain more or less realizable tech-

niques of securing gravity tenslonlng systems in order to achieve

horizontal stability of the longitudinal axis of the airship; but
all the_e devices are excessively_con_piicated and, consequently, the

arise_, would it not_b@ possible to dispense with securing
the gr_.vity tensioning system altogether?

Figs. $9, 50_ 5i indicate that thisproblem is amenable to
solution. ...........

The tensioning and compression of the envelope occur pre-

dominantly near the center; but _he further we go from the middle,
the less they become, and the shape of the cross section of the en-

velope increasingly approaches a circle. _ ' _-

535. When the aerostat is tilted, the gas no longer is able
to expand those parts of the envelope remote from the center, so that

the center of the lift force is slightly displacedtoward the raised

end of _he aerostat. When the. aspect ratio of the aerostat is small,

stab'i!ity of the longitudinal axis may be iaghieVed" Ultimately_
this question Can only be solved by experience with small aerostats

or with bags of the same shape imme_rsed inware r. -Experimentation

will also determine the largest possible as_ct ratio of an envelope

using this simple system under these or ot_er Cbnditi0ns. "
The deficiencY-in the deslgn lies in the fact that the

volume change is less, since only the center portion of the envelope
is drawn in_ while its shape is less regular; moreover, the aspect
ratio too-c0uld h_dly becoDsiderable._-_e_adv_mtage of the system
lies_ in its simplicity and _In _e u-seOf a s_0r%ene_ gondola.
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Fig, 49 Fig. 5O

.)

Fig, 51 Fig, 52

Complete Absence of Tensioning

536. If the' aspect ratio' of the envelope is small, we can

dispense with tenslop applies f_om the top altogether, i.e., we can
do without the interior z]_ins (Fig. 52).
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or inflated form;

e) inflating the envelope will also be difficult in this

state. On completion of this operation and certain other necessary
steps, it is certain that folds and furrows will have formed in the

surface of the envelope.

Fig. 53 Fig. 54

Fig. 55 Fig. 56

538. But there is more to it than this. We still must ask

ourselves what the inner gas bag will be made of. If it is made



of ssne organic material, then it will not matter that the _¢rQs_t

itself is made o£ the same thing, since the ballonet cannot be small,

and cbnsequently diffusion _rlll be enormous_ accQrdlngly, .some time

after the airship has been inflated, we sh_ll be carrying a _oadof_

explosives, a veritable mine, _t the very heart of the aerostat, not
to speak of the loss o£ gas and loss of llft force, al!_ of _hich l

pointed out some time ago.

539. I£ we make the bag of metal_ it will necessarily have

to be given an elongated shape, because its volume must vary over a

wide range, and folds must not develop in the process. In this case
the bag will have to be suspended from the upper girder (Fig. 55).

_ll thls_is not at all simple and gives rise to varlo_s com-

plicatiS_. For Instance, i£ the aero_tat is tilted the heavy gas
in the i_ternal gas bag _lll be force_ downward,_thereby adding to

the wei_t"q_ the drooping part of the_alrship and si_ultaneQusly

contributing_o the furthe_ _parture 0f_he longitudinal_xis of the
ship from the ho_iz_ta_;-_n_order to forestall this _poasibillty_

therefore, some extra device will be required'_to'_ut_e envelope o£

the ballonet in artificial tension. A soft bag, i.e., a bag made of

some organic material, has the same disadvantage of contributing to

the tilting of the longitudinal axis of the shlp. I_hall not dwell
upon the need for a pump to inflate the ballonet or a motor to drive

the pump, since these are things that can be realized _itho_t much
difficulty.

540. Enough has been said to enable us to reject completely

any idea of uslng ballonets in metal aerostats. Their use is lll-

advised for the further reason that a_ alr_hlp kee_Ing its volume con-

sistently the s_me mus_ d_velop a great deal of power _o force its
way through a denser medlum; whereas _a_r0stat with no intexior gas

bag wi_i cQ_r_c_!%a'a i_en_ermedium, and'therefore pass more easily.

_oVeyer, the_e is on_tthsr mes_us $_ providing for th_ sta-

bility of _th_ longitudlna_.ax_s'_d at thesame time dlspehslng with
an interior b_llonetand the difficulties ass_clated with it. This

is by means of transverse bulkheads of very light and flexible material

(Fig. 56).

The advantages of this system are as follows:

a) The aerostat can be made highly elongated, _hich will

make the metal envelope much easier to design, since it reduces the
folds or waves in its surface. The sharp taper _ill also contribute,

to a certain extent, to the speed o£ the aerostat.

b) D_ffuslon is eliminated; the bulkheads may also be



261

mechanically permeable to a certain extent. Only then it will be

necessary to provide communication between the compartments while the

airship is at its moorings, in order to restore the normal quantities
of gas.

c) By making the bulkheads convex in a given direction by

means of ropes, we can increase the lift force of either end of the

aerostat and thereby exert constant control over the horizontal trim.

d) The sum of the surface oread of the bulkheads will be

only slightly different fro_ the surface area of the ballo_et, where-
b

as their quality can be greatly inferior.

e) The aerostat will contract and shrink in a dense

medium, thus creating less drag than an aerostat with a ballonet in-

side. In general, the shape of the aerostat in the Vertical direc-

tion is elongated and reminiscent of the shape of most fish, which

facilitates vertical motion, in particular climbing .....!

f) For the same reason, the transverse stress on the en-

velope will be reduced, the envelope will be stronger, or given the

same strength the aerostat may be larger and have a greater load-
carrying capacity.

The extreme simpllcity of the design of this airship obliges

us to consider it even more attentively. This is the system, I

might add, which proved to be the most practical in my first experi-

ments on the design of a metal envelope. Even at that early time it
was possible to fabricate a smooth envelope with soft folds covered

by metal covers. Thus, we can minimize the size of the metal bag

while retaining a large aspect ratio, and consequently a high speed

(cf. to 346).
Nor should we not forget that an aerostat with inter!or b_k T

heads would be far safer, since in the event of damage to the envelope
leakage of gas will be_restricted to one compartment. _ _.

The disadvantages of the system are as follows:
L

a) The weight of the bulkheads and their connecting net-

work (for rhomblc network, see Fig. 56) acts on the girders and

stiffening hoops, thereby-complicating the shape of the envelope add

.requiring special modifications of the design_of the framing. But

the larger the bulkheads the less noticeable this particular drawback

will be; only when the number of bulkheads is large do we encounter-

another serious difficulty: the complexity and size of their surface
area.
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b) Another disadvantage resides in the fact that soft en-

velopes readily yield under the pressure exerted by the gas, and con-

sequently contribute to a constant, though slight oscillation of the

longitudinal axis and harmful deformations of the metal envelope.

In order to ensure safety in the event of damage to the metal

envelope, it would be wise to make the interior of the envelope con-

sist entirely of cells each, say, I or 8 cubic meters in volume.

These partitions, both longitudinal and transverse, must, of course,

also be made of soft material. This system would more or less

nullify all the above shortcomings, not to mention the fact that it

also offers maximum safety.

But unfortunately, this is not the case. In fact, stability

is only achieved if the longitudinal partitions are stretched (and

even that is not enough). But they cannot be stretched, since the

general shape of the envelope varies constantly and for that reason

the longitudinal partitions would either tear or shrivel up in

response to volume changes; neither prospect is tolerable, so that

the entire system is a dubious one at best*.

Conclusions Concerning the Above Designs

541". Only extensive and detailed calculations, and even

more important, experience can definitively decide which of the sys-

tems described is best and most practical, and under what circum-
stances.

Nevertheless, turning to the metal airship in its pure form

(i.e._ with no bulkheads made of organic material), we cannot re-

frain from suggesting to the reader one more airship design deriving

from those already described (Figs. 34, 35, 37, 50). Our intention

is to choose the best design. It is preferable that the envelope be

tensioned naturally -- by the weight of the gondola_ and that the

pressure on the propeller be transmitted to the longitudinal axis of

the aerostat; but this must not involve moving the propeller to the

end of the envelope. I accept all of these points (Fig. 34) in my

new design. I shall also rely on the best method available for se-

curing the chains by means of pulleys (Fig. 37). I should also remind

the reader of the system shown in Fig. 50, part of which I shall

introduce into the new design, since the ends of the envelope will

not be subjected to tension to any great extent, so that they will
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be close to circular in cross section. I shall minimize the number

of vertical chains in order to achieve maxlm_nsimplicity of design.

Because of the small number of chains and slots, I shall adopt the

most refined method of closing the slots (Fig. 35). In order to

reduce gondola weight and further simplify the design, I shall con-

centrate the principal loads on the vertical chains: these loads

are the motors, fuel supplies and provisions, equipment carried on

board, etc. The cabins or staterooms must be close to the principal

chains. The chains may be replaced by solid cylindrical rods or, at

least, the part of the chain that slides through the envelope may be

rigid if desired. For safety reasons, this part may consist of a
cylindrical tube with a metal cable running inside. The metal cable

will save the day if the tube should snap. The chain connections_

controls, etc., will all be concentrated in the gondola. The cat-

walk under the lower part of the envelope will be open, light, and

designed merely to facilitate inspection of the joints in the en-

velope, and the chains, rods, and tubes. In case of need, the pro-
pellet could be raised so that the blades do not extend beyond the

gondola floor as they rotate.



i XII. DESIGN OF CERTAIN COMPONE_2S OF A PARABOLIC

AEROSTAT, AND THEIR WEIGHT*

Center of Wind Pressure on Envelope

5_2. In general, the top and bott_ longitudinal girders are

unequal. I shall assume that the longitudina! axis is a straight
line passlng through the ends of the envelope or the ends of the

girders (Fig. 57).

When the aerostat is in independent flight, the air stream

will exert a certain pressure on the envelope, the location of the

center of presshre varylhg with the circumstances. The exact loca-

tion will depend On the ra_io of the lengths of the longitudinal

girders _r on the _ratlo of their rises hI and h2, For instance, in

Fig. iI the bottom diagram depicts an envelope in which the center of

pressure lies close to the center of the llft force developed by the

gas, whereas in the middle diagram the center of pressure lies lower,

and in the top diagram higher than this point.

543. When the aerostat is in independent uniform motion, the

thrust of the rotating propeller will be equal to the pressure of

the airstreamor the wind pressure on the surface of the airship.

If the propeller is mounted on a relatively stable gondola, then the

center of pressure will coincide with the geometrical center of the

propeller or its axis. Such a system is, in fact, depicted in Fig.

1. But if we take a better system (Fig. 33, Fig. 34), the center of

thrust will lie close to the longitudinal axis of the envelope. It

should actually coincide with the center of wind pressure on the

envelope. Equilibrium requires the coincidence of these two centers,

*To simplify the calculations, in this chapter I assume the shape of

the aerostat to be parabolic, even though a different shape would be
more suitable in relation to the corrugation of the surface. In any

event, the latter would be fairly close to a parabola, and the
calculations in this chapter are also approximately applicable to

the shape optimizing the mode of extension of a corrugated surface.



but, in general, they will form a couple I which will ten&to tilt the
aerostat, the more strongl_ the greater the distance between them.

5&4. This couple can always be balanced by displacing the
center of gravity of the aerostat (for instance, by moving the
gondola to the right or left) or the center of the llft,force (Fig.
42), b_t even so it is bett_r that th_c0uple be as close _o_'_ero as
possible. Actually, whenthe center of _hrust hies above th_ d_n_er-
of pressure of the air stream_ the envelope should be mademore con-
vex on top (Fig. ll_ bottom diagram). Note that even w_en t_-en_r
of thrust and the center 0f_wind pressure coincide, equ_ii_b%_'_'_ z.:-

established only when the aerostat is in uniform horizontal motion

or when the acceleration, whet_er positive or negative, is small.

Fig. 57

Now if the propeller were_s_ddenly t_ spin_rapidly, in the absence of
special countermeasurefl, "the airship_Woh_Id start to "peck" [pitch]

owing to the fact that the center of inertia of the ship does not

normally coincide with the center of wind pressure. Another drawback

of this approach to the problem of bringing the centers of pressure
into coincidence is that, as the shape of the envelope undergoes dis-

tortion, the resistance t0_ its m0ti0n increases, and it bec_rAes more

difficult to design a suitable_envel_6_. In _a good aerostat_system,

where the center of pressure on the p#opell_r is transmitted to th_
longitudinal axis, there isno need for suc_ dlstortio5 (#ig. _). "_

........... -r. : .:YJ , _: ::-z _ .................. ::._ qo- s.t.{.f _':.._:

........ 4 z. , t. i, "'_ 3t:f':J" "]:_.' ,." : . ": " 9i.[:J '.tO _..J'._,.fB.O'r5, .
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Mean Position of Center of Pressure of Air Stream

on Envelope. Length of the Girders

545. When the envelope is inflated to half capacity, the

length of the longitudinal girders must be such that the longitudinal

axis cuts the envelope, or the vertical distance between the highest

and lowest points of the envelope, exactly in two. Then the center

of pressure of the air stream will lie close to the axis.

546. For a parabolic aerostat (414), we have, approximately:

where 2s I is the length of the upper arc, and 2x I is the length of

the axis. For the lower arc we have:

2
2s 2 = 2x I (i + m

3

From a drawing of the principal cross section of the envelope

inflated to half capacity (see, e.g., Fig. 16)_ we can find the

maximum height of the envelope. Dividing this by two, we find h2.

Now subtracting the depth of the furrow (or longitudinal depression

in the top of the envelope), we find h 1. Now, once the length of the

aerostatj or the length 2x I of the axis, is known, we have all the



_?

E_ati_m of _he L_tm_ima_ G_ _ m
DefL_t_ Met_ A_z_at

2

an_

_- . p = = (_ * h,),
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Since the perimeter p of the'center cross sectlon through the en-

velope will be the same before and after deflation.

549. From equations (547), we find on subtracting:

X2 = -- .
3 s2 " sI

550.
we have

Now, eliminating x2 from the first formula in (547),

_ (s_- sl)_.h_'h3+_. -
2 s2 - sI p h4 - h3

since, on the basis of (548):

551. With the aid of formula (548), we now eliminate h4 fr_
this equation; we then find

4

-- (s2 - sl)

h_ (s2 - sl)

(p- 4_1
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Hence, for 5 or the upper rise of the deflated bag, we get

j
..... - . [p2-6.1 (s2-sl)] [_+ (s_-sl) 2p[2 3sI(s2 sl)]"{_ i }

" 212p2+(s_-sl)2] 2[p2 - 3sI (s2 - Sl)2]

we obtain h4, i.et, the lower rise, by substituting s2 for Sl, and

vice versa.

552. Since (s2 - Sl)2 is a quantity of the second order of

smallness, on discarding it we get
.... L

;-

in place of the last formula.

555. _w, d_'fi6£f_g by k, we fi=d
P

P (l- k)_[ I -_2_
' ' _(1 -:k)2J
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but s_e (I - k) 2 = 1 - 2k + k2 and since (k2) is a small quantity

of second order, we d_scard it and obtain

s I s2 - s 1

5--y(l-k)=y p p

5_- Eeplacing sI by. s2, and rice versa, we find

= P s2 s2 - sI

555- In the last two equations, we find the value of s2 - s
(5 9) as: i

s2 - S1 =

2
2 h_ - N I

3 x I

The arcs s2 and s I are known from equations (546); the perimeter

p may be determined from Fig. 16 or from the corresponding table. The

rest is known (Fig. 57)-

5_6. Once the rises h3 and h 4 are known, we can also write the

equatlon of the deflated envelope or, more accurately, the equation of

the top and bottom girders, viz. :



2yl

2 2

y= _ and y=h 4 - -- ,

where x and y are coordinates, and 2x 2 is a new axis only slightly

shorter than the previous _x . It can be determined readily from
1

equation (5_7), from which we find

557-

Le_h of Stiffenin 6 Hoops and Inclination of

Girders %0 Lon6itud/nal Axis

558. Once we have equation (556) for the girders, we also

have the length of the stiffening hoops. In the first equation, y

denotes the length of a hoop of the deflated envelope from the axis

to the upper girder, and in the second equation it has the same

significance in relation to the bottom girder; x is the distance from

the center of the envelope to the hoop. The length from one edge of

the envelope to the other, or the length of half a hoop, will be

[cf.( 56)]

where y and Yl are the radii of the envelopes inflated to form a



surface of revolution; p is the perlmenter of the center cross section;

x2 is the length of the seml-axis of the deflated envelope, close to

xI and defined by formula (557).

559. The inclination of the longitudinal girders to the axis
maybe checked from the value of the derivatives (556):

dy _ and dy 2h4x

Cross-Sectional Area of Longitudinal Girders and

Their Weight in the Case of a Variable Cross

Section (Strength of Envelope Neglected;
Gravity and Lift Force Moments Equal)

560. Chapters IX and X contain all the data needed $o solve

the problem of the cross-sectlonal a_eaof the longltudlnal girders

for a glvenmaterlal, with the strength of the envelope-neglected. We

shall now consider the simplest case (469), where the gravity moment

and the moment of the lift force are _qual_at every_ crosssection

through the aerostat, so that, being opposed, they cs_ucel each other

out. Then only the gas pressure will act on the girders.
On the basis of formulas(456) and ('_8), we find that the

top girders will be acted upon by a force

I

and the bottom girders by a force
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1

(Y3+ Yl "T

561. Do not forget that the longitudinal tension acting on

the corrugated surface will have an important effect on the stresses
in the girders since it acts in the opposite direction and will

therefore tend to reduce the girder stresses. The greater this

longitudinal tension, the smaller the force tending to stretch the

girders. In these calculations we shall neglect the elasticity of

the corrugated surface of the envelope, and assume the force exerted

by the gases acts exclusively on the longitudinal girders.

562. The ultimate strength of the material will be denoted

by K, and the permissible stress by Kd. The factor of safety will

then be K = n. Now, for the purpose of determining the cross-sec-

Kd

tional area of the top and bottom girders we have the formulas

1 n

and

3+yl'y "_-.

563. _If we _but y = YI' we obtain the maximum areas of the

center cross section through the girders; to be precise:



_6_. _ _e_ht of _top gimlets of _ariab_e cross sectiom _il

be ex_esse_ by the in_l

" -_ _ (_3÷ 7z÷ ¥ y) _-

n

Clearl_, the _hic_m_ess az_ width ,of' the g_rs _II he pro-

por_ional, on the a_erage, _o y or _o _h_ _ame_er i_# of the cr_ss

section for the s_ _eirship.

error due to the fact that dx is t_en ins%_l of ds will r_u_e
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2 2

But if x = Xl, then

8 2

and the total weight of the girders will be

2
3_ . _n _ga (Y3 ÷ Yl) ylxl"15 K

567 . This means that the weight of the girders increases with

the pressure Y3 at the lowest point of the envelope. The pressure _}

the weight of the girders by less than -- --, i.e., by a quite small

fraction of the determined value.
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varies constantly as the filling gas expands or contracts. The safety

valve may be set in such a way, for instance, that the pressure Y3 at

the lowest point can not exceed Yl" At that pressure, even the center

cross section will expand almost to a full circle, as we shall see
later on from tables. But the valve may be set to an even lower pres-

sure, say 1/2 Yl' so that the cross section is still not very full.

If we put Y3 = Yl' the cross-sectlonal area will be (cf. the

above formulas) :

for the top girders

_a_ (2yI+ 1/_-y) _.-,

and for the bottom girders

_ay_ (2yI - _/4y) • n.K

568. The maximum center section will be

9/ n and 7 _a • --.
4 _a K K

569. In general, the sum of the top a_ bottom cross sections
will be

n 2

a"IJ ' __ •4_ K Y'

Ill
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and the .maximum of this sum will be

570. 4wa. n _i
K

571. The total weight of the girders is found as [cf. (566)]:

64 n
15 K 7ga Xl"

572. Putting x--I= k, we now find

Yl

64 n 4
i_ " K " 7gawkYl'

i.e., for a constant aspect ratio k of the envelope, the weight of

the girders will be p1"oportional to the fourth power of the dimen-

sion Yl of the airship, while the lift force will increase in pro-

portion to the third power. This clearly indicates that the size of
the aerostat is limited.
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Weight of Longitudinal Girders in the Case

of a Constant Cross Section

573- In view of the fact that in certain circumstances the

aerostat may tilt• so that the pressure at the higher end increases

drastically• while a catwalk, the weight of which cannot be balanced

by the gas pressure, is slung beneath the bottom girders• we would do

well to assume that the girder cross section is constant, irrespective

of how close parts of the girder may be to the ends of the envelope

and the corresponding maximum gas pressure. Then• on the basis of

formulas (563)• we arrive at the following expression for the total

weight of all the girders:

3
2 n {(:"3 + ¼ Yl ) " 2Sl + (Y3+ ¥ :'z) " 2s2]',-o'g,%_

where (2s I + 2s 2) is the perimeter of the principal longitudinal sec-

tion through the envelope.

574. We may assume approximately, cf. (414) :

S : S = X + m . m ;
1 2 1 3

--1

in which case the weight of the girders will be
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n 2 _i

575- Still less accurately:

n

4 TgaF (Y3÷ Yl)"

54- Putting Y3 = YI' we have

n__. x 3
8_ " 7ga - K 121"

577- Formulas (575) amd (566) provide us with an opportunity

to find out by how many times the weight of girders of constant cross

section will exceed the weight of girders of variable thickness. By

dividing the first formula by the second, we obtain t_enlS/8 or I-7/8.

Clearly, then, the weight of the girders of variable cross section is

almost half that of the girders of constant cross section.

Wei6ht of Stiffening Hoops of Constant Cross Section

(Strength of Enw elope Neglected)

578. If we assume that the corrugated aerostat envelope ks

very thin and that its stiffness can be neglected in our calculations,

the longitudinal gas pressure must be resisted exclusively by the

hoops. We shall proceed to determine the weight of hoops of con-
stant thickness for this case.
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From Chapter X [(486) ff. ], we draw the follovlng conclusions

concerning the transverse stresses on the envelope.

a) The maximum stress at any cross section occurs at the

highest point of that cross section.

b) In the principal cross section, the stresses are greater

than in any other section.

c) We may conclude from the first two points that the

maximum transverse stresses in a given envelope occur at the highest

point of the center cross section.

This stress is expressed exactly by the formula

a (h (h+ hI + )tz : 7 " hl) 2Y3

[cf. Fig. 15 and formulas (498)].

579. Here the letter h denotes the height of the envelope,
or the vertical distance between the highest a_qd lowest points of the

envelope (Fig. _15).

580. Assu_ning that this is the _ximu_ stress for all the

hoops_ we mr%st also asstmle that their crOss-sectional area is the

same_ namely:

a (h - hl) ( h + hI + 2Y3) ' n.2 K

Here the stress is calculated per unit width of a strip of the

cross section. The formula therefore expresses the cross-sectional

area of hoops spaced unit distance apart. Clearly, the total weight
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of the hoogs will be independent of how clgselythe _ are spaced over

the ler_th of the envelope, since the cross-sectional area of each
hoop will diminish proportionately as the number of hoops stiffening

the envelope increases.

581. If we take a transverse strip of the envelope of unit

width and unit length_ then the weight of the hoop per unit area of

the envelope may be expressed [cf. (580)] as:

70 . A2 (h-h l) (h+h l+2y 3) • _,

where To is the density of the material constituting the hoops.

582. Obviously, the welght of all the hoops may be expressed

as the product of this quantity and the total surface area 2F 1 of
the envelope [cf. (386)]; thus, we have

4 TT70a (h- hl ) (h+ hl+ 2Y3) YlXl<l+ 2 _I)__ . n

583. This formula expresses with a high degree of accuracy

the weight of hoops of constant cross section. But the weight of the

hoops may be expressed in still another way, though less exactly.
-The _verage press GreLper unit area of any cross section is

(Y3 + Yl) a [cf. (486)]. The pressure on the hoop per unit width at

the cente_ cross section of the envelope is a (Y_p Yl ) YI" The cross-
sectional area is

n

........ YiiY3÷ Y£)"T"
T L
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58_. Accordingly, the weight of the complete set of hoops

(582) will be:

2
e Yl n

X
1

58_. P_t_ Y3 --Yl _ _ = _' we fi_

_- "?oa_r + 5x2_ " --'K

Hence we see that the weight of the hoops increases in _ropor-

tion to the fourth power of the dimension Yl of the airship (if its
sP_pe varies in the same way).

The Weight of Stiffening Hoopsof Variable Cross

Section (Strength of Envelo/pe Neglected)

586. In view of the fact that the envelope offers excellent

resistance to the pressure exerted Izj the gas in the transverse direc-

tion -- in the direction of the hoops_ we may also assume that the

cross section of the hoops varies in accordance with the true gas

pressure.
The average pressure [cf. (486) and later] per unit surface

area of any cross section is a (Y3 + Yl); the pressure acting on a

hoop per unit width will be a (Y3 + Yl ) 2y; the average tension on
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r_

C_e_/_mt3.7, _ weight of _ hooI_ will be

_. _e _ mrri_ed at a fo_ identical with _ (566)

for _e weight of _e _er_. Cle_ly, t_e to_l w_ight of the

_pS may be expressed b_ exz_%Tiy the s_ formTil_ as used for %he

_ of _ae _ers (566), i.e.,
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64 n rrToakY _
15

589. I have assumed here that the stress on a given hoop is

constant and equal to the average stregsj but in fact the maximum
stress is only slightly different from the minimum stress. From

formula (_68), we find this stress ratio for Y3 = Yl"

Y Y

Clearly, the smaller the radius y of the cross section, the

closer this ratiQ willbe to unity. _Qr the principal cross section_

the ratio will be greatest, but even here it only_Sd_s'to 9/7.

Accordingly, the maximum stress will be only 1/7 greater than the

average stress, and the minimum stress will be smaller by the same

factor. Accordingly, the top of each hoop may be made 1/7 thicker
than the bottom.

590. However, in view of the use of simplified formulas for

the gas pressure in calculating the hoop stresses_ the true stress

will be at least 5/4 times greater than indicated here_ so that there
will be no partlc_lar _eed to ma_e each hoop of variable thickness.

Formulas (488) and (4_) serve a_ a'means'0f checking this.

_ _enable us to d_er&In¢ by how

many times the weight of hoops of _onstant Cr0ss section_wiil exceed

the weight of hoops of variable thickness. Neglecting the factor

(! 2 "_l) in the first formula, since it is close to unity, and_ , _- -
+ _ " x2 ....

J.

dividing through by the second formula, we arrive at a figure of 5/4.

Consequently, using a constant cross section increases the weight of

the hoops by only 1/4 the weight of the hoops of variable cross section.
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Strength of Envelope:
S_trength.

Transverse and Longitudinal

Weight of Envelope

592. The ultimate transverse strength of the envelope overan

interval dx is approximately equal to K • Senv • dx; the average ten-

sion on the envelope due to the gas pressure may be expressed (586)
as:

+ )

The ratio of the resistance of the material to the applied
force will be

8envK

_ (Y3 _Yl ) _- = n.a + y

Clearly, then, the factor n is inversely proportional to the

diameter y of the cross section. Hence_ when the factor n is ade-

quate at the center cross section, it will a forteriori b_e adequate

at smaller cross _section_-(given_ of course, an envelope of constant

thickness _env).

593. From this last formula, we have

n

Senv = a (Y3 + Yl ) y " _"
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i.e., in the case of _ variable en_lope cross section the envelope

_hickness will be directly proportiona/ to the diameter 2y of the

cross secb_os of a given airship.

594- If we _ss_ the envelope thickness to be constant, then

we m_st put y = Yl in the formula: we then find:

yl) n5 --_ (Y3+ Yl" -e_ K"

595- Making the further ass_tion that Y3 = YI" we have:

n

i.e. _ the thickness of the _eros_t e_Yelope ir_rease_ in proportion

to the sq_ of its vertical dime_iom _I-

_96. !he weight of am e_lope of cons_i thic_ss, wi%h a_l

_dequ_te s_ety factor n in the trmas_erse _ire:ction, is o_t_ined

when the surfe_e _ea of the envelope is multipiied by the thiakness

5 and the density 7env.el_g

Assuming the envelope _o have the shape of a surface of reTolu-

tion, _e find the total _urface area from t_ formul_ (386):

2F I 3 _z_ + 5

2

liti
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But the inflated envelope is covered with corrugations 3 so

that we must introduce a correction factor into formula (386); more-

over, part of the envelope surface overlaps at the seams, while, on

the other hand, part is replaced by the fairly broad stiffening hoops.

We can take all these corrections into account by means of a single

multiplier _3 which is only slightly greater than unity and may even

be equal to unity.

In fact, on the basis of the preceding formula and formula

(594), the weight of the envelope will be found to be:

8 2 2

 %nv lYl• % + yl)(1+ 7 "
n

x I

597- Putting Y3 = Yl and _I = X, we find

16 4

_7envakYl (I +

Accordingly, the weight of an envelope of constant thickness,

like that of the hoops, is proportional to the fourth power of the

dimensions of an airship, assuming the shape varies in a similar man-

ner.

Moreover, on comparing formulas (596) and (584), we see that

the weight of the hoops and the weight of the envelope are almost the

same, since the ratio _ is very close to unity.

598. From the standpoint of adequate transverse strength, th9

ygi_ht of an envelope of variable thiekn#ss is clearly expressed by

the same formula as the weight of hoops of variable cross section (588)

or the weight of 5irders of variable thickness (584).

We must now consider the question: will an envelope designed
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for adequate transverse resistance be sufficiently strong in the

longitudinal direction as well?

599. If no folds of any kind were formed and if the envelope

were smooth in the longitudinal direction_ its strength in that di-

rection would not be difficult to calculate. In fact, in that case

the ultimate strength of any given cross section in longitudinal
tension would be

2_y5 K.
env

The gas pressure on that cross section would be:

a (Y3+ Yl)

The average safety factor for the cross section would there-
fore be:

n _-

25envK

a + Yl)y

i.e.j twice as great in the longitudinal as in the transverse direc-

tion [cf. (592)].

However_ because of folds in the longitudinal direction, the

strength in that direction will depend not only on the envelope

thickness and the strength of the material constituting the envelope,

but also on the shape of the corrugations_ their amplitude, slope,

and in general on the degree of tension, which will in turn depend on

the extent to which the shape of the cross section departs from the

mathematical curve defined in Chapter VI under the assumption of
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near-zero longitudinal tension. This is a highly involved question

and the formulas (332) to (341) in Chapter VII will prove very useful

in clarifying it.

Nevertheless it seems to me that this tension will not be less

than half that for a smooth envelope, under favorable conditions_ so

that the strength in the longitudinal direction will not be less

than the strength in the transverse direction.

600. We can now summarize our calculations on the weight of

the structural components of the aerostat and the envelope.

a) The weight of an envelope of constant thickness is ex-

pressed by the same formula as used for the weight of hoops of

constant cross section (584) and (596).

b) The same applies to the weight of an envelope and

hoops of variable cross section (606) with adequate strength.

c) These weights ("b_" above) are likewise severally

equal to the weight of girders of variable thickness (583).

d) The weight of hoops or the weight of an envelope of

constant thickness is l-J4 times greater than the corresponding

weight for variable thickness.

e) The weight of girders with a constant cross-sectional

area is 1-7/8 times greater than the corresponding weight when the

thickness diminishes toward the ends of the envelope.

f) An envelope whose strength is satisfactory in the

transverse direction will also, under favorable conditions, be suffi-

ciently strong in the longitudinal direction as well.

g) The weight of the envelope and of the structural com-

ponents of an aerostat whose shape varies in a similar manner will

increase in proportion to the fourth power of the linear dimensions

of the aerostat. But if the height of the envelope and its length

increase disproportionately, the increase in weight will be propor-

tional to the length 2x I and the cube of the height (2Yl)3, and will,

in general_ be proportional to Xl_ I.

h) Denoting the weight of hoops of variable thickness by

G and neglecting the strength of the metal envelope_ we find that the
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weight of the hoops of variable cross section plus the weight of

girders of variable cross section is 2G.

i) The weight of hoops of constant cross section and

girders of constant cross section will be:

5/4 a + 15/8 G : 25/8 a,

(i.e._ I-9/16 times greater than before "h").

j) The weight of hoops of constant cross section and gird-
ers of variable cross section will be:

_/_G+_:9/4_,

(i.e._ only 9/8 times greater than in case "h").

k) By eliminating the massive parts or reducing their

weight to the point where it can be safely neglected_ we find that

the weight of an envelope of variable thickness satisfying the re-

quirement of adequate strength will be G, and the weight of an en-

velope of constant thickness will be 5/4 G.

i) The weight of an envelope of cross section and girders

of variable cross section (without hoops) will be

_/4G+G= 9/4_:2 V4G.

m) The weight of an envelope of constant cross section

with hoops of constant cross section and girders of variable cross
section will be:
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_/4a+ U4a+ 0 --3 i/2G.

Of course, the strength of an envelope of this type will be

twice that of an envelope corresponding to case "h"; moreover, this

type of aerostat will be safe to opera%e even if heavily tilted.

Therefore, reducing the weight of the envelope and the structural

components by half_ we obtain as the sum of the weights only

7/4G-- 13/4Q.

n) Thus, dropping G, we obtain the following sequence of

coefficients expressing the weight of the components and the envelope:

is 2s 3 d8s 2 l/4s 1 d4s 2 d4j 3 _/'2j 1 3/4 .

Weight of Envelope of Constant Thickness

when its Strength is Neglected

601. In this case, the weight of the envelope may be ex-

pressed by the formula

2F_Yen v " 5env,

where 2F is the surface area of the inflated envelope determined from

formula (386) :
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2F --8/3  YlXl + 5

The remaining quantities are, respectively: the area coeffi-

cient _ slightly greater than unity_ the density 7 of the ma-
env

terial, and the thickness 6 of the material.
env

We__ht of Cylindrical Lonsitudinal Strips F0rmin _ the

Top and Bottom of the Envelope for the
Case of Constant Width

602. The sum of the weights of two almost identical smooth

rectangular longitudinal strips will be:

[Qs =] 7s (2Sl ÷ 2s2) bsSs_

where 7s is the density of the material constituting the strip; s 1

and s2 are the lengths of the strips; b s is the width of the strip;

6s its thickness.

603. We may assume that approximately 2s I + 2s 2 = 4Xl, so

that the weight of the strip will be 47 x b 5 .
s 1 s s

If the width of the strip is assumed equal to the width of the

gondola and proportional to the vertical dimensions of the aerostat

i.e._ b = y,/m_ then the weight of the strips may be expressed
2Y I, S

by the formula



4 Xl 4

m " y'_ " _lTs 5 = ---- s m ""XlYlTsSs'

where m = const.

We may also assume the weight of the strips to be equal to a

certain fraction of the weight of the envelope plus the hoops.

Weisht of Main Vertical Rod-Chains

604. The weight of the gondola and its entire contents

usually comprises only half the total lift force of the aerostat.

Therefore, assuming that the chains and rods are vertical and that the

tension on these members is half the total lift force, we can con-

struct the equation:

I aU = K Frod"
2 n

Here a is the difference between the densities of the external

and internal gases; U is the gas volume or the volume of the gas

cell; K is the ultimate strength of the chain material; n is the

safety factor assigned to the chains; F is the sum of the areas
rod

of normal cross sections through the rods; chains_ or cables.

605. Using 7rod to denote the density of the material, and

tro d to denote the greatest vertical distance between the highest

point of the envelope and the floor of the gondola, we find that the

weight of these rods and supports cannot exceed 7rodFrod_rod . In-

cluding the parabolic chains in the category of vertical chains, we
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may assume, on the basis of this and previous formulas_ that the
total weight will be roughly:

n

[Qrod =] 2-K aU 7rod_rod .

Weight of Passengers and Motors

k
P

606. Let the weight of the passengers be a certain fraction

of the lift force aU; then their weight may be expressed by the

formula

[Qp =] kp aU.

Now let the weight of the motors also be a certain fraction

km of the lift force; their weight will then be

[Qm :]km aU,

Weight of Gondola_ Control Surfaces_ and Propellers

607. Since the weight of the gondola is proportional to the

weight of the passengers, motors_ etc._ i.e._ proportional to the

lift force_ we may assume the weight of the gondola to be
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[Qg =] kgaU,

where k
g

gondola.

is a certain fraction of the lift force assigned to the

608. Assuming the aerostat to have a constant shape, we may

make the further assumption, as in naval architecture_ that the sur-

face of the control surfaces and propellers separately will consti-

tute a certainfraction of the envelope cross section or, in other

words, that their surface area will be proportional to the surface

area of the ship.

If the speed of an aerostat varying in this manner must be

constant, then the pressure on the control surfaces and propeller

will also be proportional to the surface area of the ship. The mo-

ment of this pre_su_e will then be proportional to the volume. If

the average thickness of the control surfaces, etc., is proportional

to the size of the ship, then the moment of resistance of these

parts, just like the moment of the pressure exerted on them by the

air stream, will be proportional tothe cube of the linear dimen-'

sions of the s_iip "or its volume. Thus, the moment of resistance

will correspond to the moment of pressure, so that the weight of the

control surfaces, propellers, etc., _ill be proportional to the

volume and may be expressed by the formula

[_ = ] kyaU,

where k is a certain fraction of the lift force assigned to the
Y

control surfaces.

609. We have assumed that the thrust developed by the motors

is proportional to the lift force of the ship, i.e., proportional to

the cube of the ship's dimensions. Clearly, then, the pressure on

the control surfaces and propellers will increase more rapidly than

the square of the ship's dimensions or its surface area. Consequently,

under conditions such that the speed increases with the size of the

ship, the weight of the control surfaces must increase faster than the

J



cube of its dimensions. In order to avoid this_ it will be necessary

for the control surfaces to be made of stronger and lighter material_

of al_mLinum or steel tubes for instance; finally_ several propellers

may be required. In general, by exercising a certain amount of in-

genuity it should be possible to preserve the situation in which the

weight of the control surfaces and propellers is proportional to the
lift force.

Black Inner Tube for Heating the Light Gas

610. A black metal tube placed inside the envelope (Fig. I)

for the purpose of heating the hydrogen shouldbe made of such ma-

terial and so designed as not to burn through and to sustain a tem-

perature difference between the external air and the internal gas_

which is the greater the larger the ship. The average thickness of

the sheet metal of which the tube is made may be assumed to be con-

stant or to increase only slightly With the size of the ship; the

surface area of the tube may be assumed to be proportional to the

surface area or_ at least_ to the volume of the aerostat. Clearly,

then_ the weight of the tubes can not increase faster than the lift

force of the shipj so that we may generously assume for the weight

of the heating tubes:

[Qtube =] ktubeaU"

Of course, the thickness of the material forming a given tube

must correspond with the temperature of its parts.

At the point where the hot combustion products are first ad-

mi%ted_ the tube can be made heavier_ but further along the thickness
can be reduced. ....

J 7

611. We stil ! liave the problem of determining the weight of

the Couplings, valves, sheathing for the gondola, regulators, pulleys,

anchors, catwalk, pas_6ngers seat s_ and of a host of fittings, me-

chanisms, and misceIi&fueo_items of co mlfort and necessity. The weight
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of the fuel has still to be taken into account in the calculations,
bearing in mind the gas motors that require a supply of gas from the
aerostat envelope.

Suppose that the weight of all the items not yet taken into
account in the calculations is proportional to the total lift force;
then this weight will be

Qmisc = kmlscaU;

where kmisc is somefraction of the lift force corresponding to the

miscellaneous equipment and supplies.

612. The term U_ i.e. 3 the volume of the light gas_ appears
in the preceding formulas. From (389)_ we know that

2uI = 16/l} y ixl.

But, on the one hand_ this is the volume of an aerostat in-

flated to the shape of a body of revolution, i.e., it is extremely

large; while_ on the other hand_ it is small_ since it must be in-

creased by the intermediate elongated cylinder (Figs. I and 3).

In general, in view of the fact that the volume of the addi-

tional cylinder is proportional to the volume of the aerostat, we

may assume for the total volume

2
u : eUlkv : 16/l   ixl,

where kv is close to unity.



XIII. CAICUIATIONOFTHEHEIGHTOFTHESKELLOFA BALLOON

A few preliminary words on the significance of the dimensions
of a balloon (aerostat) are not out of place here.

The larger the dimensions, the more solid the construction of
the metal shell and the more under control it is. A dirigible needs

to be of large size for the gain from air support to exceed that

from sea support. Even Giffard (1825-1882) understood very well the

importance of large dimensions. Although he _as a practical worker

who spent millions on his steam engines, pumps, and balloons, he

3
planned to build a balloon of displacement 220 000 m .

He is not to be considered ignorant or a dreamer in this matter;

3
it was not by luck he made an anchored balloon of 25 000 m . He _s

interested in air flight from his youth; his guided balloons are

known to all and constituted an epoch in aeronautics. Blindness

and death have taken this ingenious man from us; he left all his

estate to the poor of Paris and to learned societies to continue

his work on guided balloons. What might have been if this genius

had arisen and had used for his plans the present-day power of

technology, our present Levasseur engines, which give something

like a horsepower per kilogram weight: His planned balloon had a

volume over twice that of my metal one designed for 200 passengers.

So we should not be surprised at the large dimensions of the

metal shells of aircraft; they will be even larger than he thought.

Small balloons are unsuitable not only in respect of material;

they would have metal shells of inadequate strength.

However, they can act as a means of studying ways of making
such shells; they will also serve as an intermediate step to the

vast aircraft, just as a small and weak child grows into a useful
worker.

613. We have available data for calculating the largest

dimensions of the shell with respect to height. The principal basis

for this is the weight of the shell and of its massive parts.

From (600) we see that this weight can vary greatly. The

following are some cases of practical or theoretical significance.

These will be used in deriving the equations defining the height.

a) A shell of variable thickness, but so designed as to sus-

tain the lengthwise and transverse pressures of the gases and other
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disruptive forces. We neglect the weight and resistance of the spars

and struts.

We take the weight of the shell as G [see (600), which is also

needed later_.

b) The same, but of constant thickness, which is governed only

by the size of the vessel. The weight is 5G/4.

c) The same (shell of constant thickness for a given balloon);

we neglect the resistance of the spars and struts, but the weight of

these is proportional to the lift of the vessel, which means that

their thickness in all directions is proportional to the dimensions

of the vessel. The weight of the shell is then

s_O _

in which k

s,O

struts.

is the part of the lift all taken up by the spars and

d ) Longitudinal spars of variable thickness and shell of

variable thickness share equally the resistance to lengthwise forces.

There are no struts_ which are replaced by the shell. The spars j

have half weight (G/2)_ the weight of the shell being normal (5G/4).

Then the weight of shell and spars is

}/40+ o: 7/4G.

e) The same, but the weight of the shell halved;

struts of constant thickness and constant weight (5G/8).

of the shell with struts and spars is then

but also

The weight
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J2o+ 5/8a+  /8a= z/4a,

which is as before.

614. All these cases are applicable only to very large

balloons, for which the shell is of adequate thickness. Small sizes

of vessel cause the shell to be too thin and so are not practical.

Then we can assume a shell of constant thickness generally,

for all sizes of vessel, large and small.

f) For small sizes it is sufficient to take the weight of

spars and struts as proportional to the lift, from (613); this is

[Qs,o = ] aUk .
s_O

The weight of a shell is known from (601).

g) On the other hand, we can neglect the resistance of the

shell for vessels of large size, the spars and struts providing the

resistance to the disruptive forces. We take the cross-section of

the spars as variable (as usual) and that of the struts as con-

stant, so the weight is given by (600) as

5 9
G+-G=-G.

4 4

To this we must add the weight of the shell in accordance

with (601). This formula also contains the weight of the length-

wise mounting band, which may or may not be present (Figs. 1-7).

Where the shell acts as a supporting material, we may put the weight
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of this band as

[Qt = ] Gk ,b

in which k
b

band.

is the part (of course less than one) assigned to the

615. The weight A of the shell with struts, spars, and band
b in cases a-g will be

a) A--G(I+k ),
b

b) A = G (5/4+ k ),
b

c) A=G (5/4+ k ) + aUk
b 0, s

d) A : 0 (7/4 + k ),
b

e) A = G (7/4 + k ),
b

" 2

f) A=aUk +8 tl +
s, 0 _ _YlXl

F 2
g) A=2a+8/3 <z+-.

4 _YlXl 5
Y--_> _7s5.2 s

x I

*x
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616. The basis for deriving the equation defining the height

of the shell is that the weight of all parts and loads is equal to the

upthrust aU. This weight without the shell is given by (602-612) as

aUCk, +, ÷h÷k +k +k ÷a'k ).p k c P r ch

Here the coefficients with subscripts represent the following:

k black pipe, k keel plus hold, k motors, k controls, k pas-
bp k m c P

sengers, and k reserve.
r

617.

or chains;

Also, k is the weight of the vertical principal rods
ch

this is known from (605), and if we put _ = ktYl, wech

have the weight as

n

Gkch = K aUTchk _YI'

which iS proportional to the fourth power of the height y of the
1

balloon, because U is proportional to the cube of y . This means
1

that it is proportional to G, so k is a constant coefficient re-
ch

presenting a certain fraction of the weight G of a shell of variable

thickness.

618. The general equation for the height of the shell on the

above basis is



3o3

A+Ok +aU<% +_+_+K +k +k )--a_.
ch P c p k

This states that the weight of the shell A with the principal

rods Gk and the balanced keel plus hold is equal to half the up-
ch

thrust of the vessel after subtracting the weight of the light gas.

619. We do not propose to determine the weight of the keel

and other parts of the vessel:

aU(% +k +k ÷k +k ÷k ).p k M c p r

My earlier work (e.g., "A simple study of an air vessel")

shows that this weight is about half of the total upthrust of the

vessel; on this basis we can simplify (618) to

/

A + Gk = 1/2aU.
ch

620. A is known from (613), and k
ch

(617)as:

can be found from

n

kch = 2-_aUFchktYl.
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621. Fromthis wemust eliminate U and G; G we find from
(588) and (566)as

l 3G 32 . n . + Y_)y x ;

15 K _Tcha Yl_ i I

U is known from (612).

Then we have that

k
ch

For instance, if

k t = 3; k = I;
U

then

3
k = -

eh 8
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i.e., the weight of the chains is about 1/3 of the weight of a shell

of variable thickness.

622. In cases a, b, d, and e we can put (619) as

1
G(k + k + k ) = - aU,

ch b 2

in which k is the constant coefficient in parentheses in (615); for

instance_ in case a

A=G(I+k )
b

and so on.

We eliminate

over-all height 2y
i

U and G, simplify, and determine

of the shell to get

y or the
1

Y
1

K
k --
U n

s ch b Yl

623. This shows that the over-all height 2y of the shell is
1

proportional to the strength K of the material and is inversely

proportional to the safety factor n. It is also inversely pro-
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portional to the density 7 of the material, to the sum (k + k + k )

s cg b

dependent [see (613)] on the design of shell, and to (1 + y /y ), which

3 1
is dependent on the excess pressure y /y of the gas at the lowest

3 1
point in the shell.

624. Case a of (615), when the m_ssive parts of the shell

are so small as to have negligible weight, is of little practical

importance. Then the dimensions are largest, other things being

equal, so A or K is least.
2

Then putting K = 60 kg/mm in (6_1/) and (622), with n== 6,3/8
k = l, k = O, 7 = 7.5, k = l, and y y = l, we have k and

u b s 3 1 ch

y = 121.2 m, so the shell has a height of 242.4 m, or somewhat less
i

than the Eifel tower. But such dimensions are far from obligatory;

for instance, the size is reduced by a factor l0 if the strength is

increased by a factor 10, so the 2y of (622) will be 24 m.

1

625. In ease b, which is very similar to the previous but has

a shell of constant thickness (for a given vessel), we find for the

same conditions that y = 102.6 m or 2y = 205.2 m.

1 1

626. Turning now to the more practical cases d and e of

(613), _e have

7
k = -; y = 78.4 m and 2y = 156.8 m.

4 i I

This is about half the height of the Eifel tower.

627. It is of interest to deduce the upthrust of such a

giant, as well as the thickness of the lengthwise spars and that of

the shell.

To do this, we use the upthrust given by (612):
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aU = 16 2

15" kCqx¢.

628. We put k = 1.2, y = 150 m, w = 22/7, x = 7Y , and

U i i i

a = 0.001 to get aU = 9900 t. Not less then a tenth of this force may

be devoted to passengers; allowing i00 kg for each, we obtain 9900

passengers.

629. Formula (562) expresses the sum of the cross-sectio_l

areas of the spars in the midsection of the shell.

This cross-section will be half that of (613) for cases d and

e, and for one spar half this. The area is X2, so the size of the spar

is

2 i K

630. The shell thickness providing a safety factor n = 6

in the transverse direction is on average given by (594 ) as

5 =a(y +y)y
s 3 i I K

For case d, under the usual conditions and with 2y = 150 m, we
1

have 5 = 1.125 mm_ which is rather thicker than roofing iron (about

S

three times).

631. Struts are assumed in e; their cross-sectional area
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equals that of the shell, since this area (of shell or struts) is

5t in the lengthwise section of a shell of length t. Assuming one

strut per meter of lengthwise section and taking the struts as square,

we have the side X of the square as

X = _f-Ss t.

With 5 = 0.562 mm and t = i000 mm we have X = 29.7 _.

S

The struts will be thicker if more widely spaced. The struts

may be streamlined in cross-section, in which case they can increase

the surface area and lift of the shell. For instance, an elongation

of nine increases the lift by 7%, or nearly doubles the number of

passengers.

632. From (604) we have

aUn
F - •

ch 2K

This enables us to calculate the cross-section of the

principal chains, which support the hold, namely F = 4950 cm 2

ch

for cases d and e. If we assume that the chains take up half the

length of the airship and are 5 m apart, we find for double rows

2
that there are about 200 chains each of cross-section 25 cm .

633. Equation (622) can be put in more general form if we

assume that the shell and its massive parts take up some fraction

other than half of the upthrust aU, this part being e:
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e = 1 - (kb + k + k + k + k + k ).
P k M e p r

Then (622) is replaced by

G(k + k + k ) = eaU
ch b

and

ek K
U

Y -- _"3

1 27 n(k +ks ch + kb <i + _1 )"

This last reveals the relation of 2y
I

shell:

_,. , .

to weight e of the

the latter increases with y .

I

634 . An approximation to replace (621) is

(1 - e)ktkU" - ........
-_ k_.'-., = ''

" '(ch ..... +-- )_.. , _q Y}
Yi

This shows that the chain-weight coefficient decreases as

t _ L r ;
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the relative weight e (shell plus massive parts) increases.

655. We start with the smallest sizes for our first con-

struction of airship, of course. From (633) we see that y decreases
1

as the safety factor n increases, so we can construct not only

giants but also small airships while gaining in safety factor. As-

suming a given n, we deduce y from (633), and then from (594 ) we
1

calculate the thickness of the shell.

For cases a, b, and d we take the full calculated thickness

5; for case e, half of it as given by (613).

636. We deduce n from (630) and then eliminate y from
1

the resulting formula by means of (633) to get

n

_a 2k e • K

87 (k+ k + k )2 7
S

If we assume that the breaking strength K is proportional to

7 , as is true for sGme materials, we have K/7 constant, in which

S S

case the safety factor increases as 7 and 5 decrease.
S S

637. For instance, if we were to replace iron by aluminum in

any of the cases a-e and reduce the thickness of the shell by a

factor 6, the safety factor would increase by a factor 18 (aluminum

is 3 times lighter than iron).

The safety factor should, naturally, be increased, in view of

the small thickness of the shell, but we should hardly increase the

safety factor of the massive parts (struts, longitudinal spars,

pri1_cipal chains), for this is quite unproductive. For what reason

should we increase, for example, the safety factor of the longitudinal

spars 18 times sixfold, i.e., to 108?

These equations for the height of the shell are thus un-

suitable for cases d and e if we wish to make an airship of the

least size.
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They are applicable, though, to cases a and b.

638. For example, for cases b (shell of constant thickness,
weight of massive parts negligible) we have from (630) subject to
the conditions of (625) that 8 = 2 mm; we have taken 2y as 200 m.

s 1
If now we replace iron by aluminumand reduce the thickness by a
factor lO, the height is reduced by a factor 30 and so will be 2y =

1
= 6.67 m. The aluminum shell will be 0.2 mmthick, or 2-i/2 times
less than the thickness of roofing iron.

639. If we leave the material as iron but reduce the thick-
ness by a factor of slightly more than 13, _e have 2y = 15 m and

1
= 0.15 mm.

s
This thickness of tinplate is used commercially; I have such

material in sheets about 50 cm long and about 30 cmwide.
These sheets are very rigid, and I consider them to be a

material suitable for constructing airships that are not playthings,

although case b may mostly be of significance as an experiment, in

which case the size could even be reduced to 2-3 m.

640. We eliminate n fran (630) and (636) to find

y 5 , which we eliminate in turn from (636) and find n as
s s

I K ek t

n = -- • _ •

s i ch b k.

Taking K/y as roughly constant for constructional materials,

we see that the safety factor increases as y decreases; but ex-
1

cessive safety in the massive parts is unnecessary and unfavorable.

641. The k of (634) is not dependent on n, T, or 5 , if we

ch s

assume a single material and the same n for all parts of the shell.
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642. Nowwe consider an aluminum airship of type e, i.e.,
with struts and lengthwise spars as in (613), and put k = l,

u
a = 0.001 (ton/m3), k = O, 7 = 2.5, A = 7/4, 5 = 0.2 ram, e =

2b s s

= 0.5, K = 20 kJmm , k = 3, and y /y = i; then from (633),
t 3 1

(634), and (64o)

3
k = -; y = 8.5; n = 55.4.
ch 8 1

In spite of the thin shell and light material, 2y = 17 m,
I

so the airship is hardly of sm_ll height; but the safety factor

is enormous, and, although this may be desirable for the shell

(in view of its thinness), it is in no _ay desirable for the

massive parts, because weight economy is of particular value for
a balloon.

643. Case c is one in which the shell is designed to sustain

lengthwise and transverse forces but still has massive parts, whose

resistance we neglect and whose weight we take as proportional to

the upthrust.

The thickness of the spars and struts is, from (613), pro-

portional to the dimensions of the balloon.

The equation defining y is found, as in other cases, from

i

(615), (617), (621), and (627).
We have

(e - k s )kuK
y =

l Q y©27s'n +k +k )gl+
ch b "
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and k we know from (621).
ch

This equation is the most applicable to giant airships, for
which the shell is reasonably thick and the massive parts are not of
excessive weight or strength.

2
644. Weput k = l, k = 0.05, K = 60 kg/mm , kb = O,

u S

n = 6, c = 7.5, Y = y , t = 0.5, and k_ = 3; then
3 1

3
k = -; Y = 92.3 m; 8 = 1.9 ram.
ch 8 i s

This k indicates that the spars and struts take up only

s

1/20 of the upthrust aU of the vessel, or 1/lO of the weight of the

shell with its massive attachments and chains.

645. Clearly, larger k imply smaller y ; but then the shell
s I

will be thinner _see (594 ) or (630)]. Let k = 0.25, the rest being
S

as in (644). Then y = 51.4 m, k = 3/8, and _ = 0.53 mm.

1 ch s

646. If we increase k further (make the spars and struts

more massive), we reduce the size of the vessel; the thickness of

the shell is reduced.

In case c we may also increase n by a factor 3; then

(641) and (643) show that y is reduced by a factor 3, which re-

1

quires from (658) a shell 3 times thinner. Then 2y = 34.36 m,

i

n = 18, and _ = 0.177 ram.

S

The shell is of inadequate thickness, and the size of the

airship is enormous.

647. Case e of (615) has a shell of such small size that the
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safety factor of the shell and the other parts may be taken as more

than sufficient. In fact_ formula (592), for a shell of constant

thickness, shows that the safety factor is inversely proportional to

y Therefore the safety factor of a shell of small size made of
1

ordinary commercial tinplate needs no attention at all.

From (615) and (618) we have

s 3 ll _ 5 x_I s s ch

We put

aUk + Gk = aUk

s ch s, ch

in which k is the sum of the coefficients for spars, struts, and

s,ch

chains, the weight of the last being taken as proportional to the

upthrust aU. Then eliminating U by means of (627) or (612), we have

y

1
O._ak (i - e - k )

U s,ch

648. Here we put, for example: I] = i, 7 = 2.5 (aluminum),

IIiii
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5 = 0.2 mm (thinner than ordinary tinDlate by a factor 1-1/2), a =

s 2 2
= O.OO1, k = l, e = 0.4, k = 0.2; we neglect 2y /5x to get

u s,qh i I

that y = 25/8 m and 2y = 25/4 m.

1 1

Such airships may be made for instruction in design rather

than for practical use.
The over-all height will be only 25/8 m if 5 is made smaller

S

by a factor two. Aluminum sheet 1/12 mm thick feels more rigid

than the material of a visiting card. This design may be used for

practical construction.

It is very difficult to construct the shell of a small air-

ship frcm corrugated metal, but there is no difficulty in using

flat sheets [see (342-346)].

649. Case f is applicable only to relatively small airships,

whereas case g is applicable mainly to vast ones.

In these the spars, struts, and chains are designed to sus-

tain the action of disruptive forces; the resistance of the shell

is neglected, and its thickness is determined by considerations of

practicality.

The equation for 27 is, from (615), (618), and (633):
1

o +koh+bj+3_yllx +x_Ts _s--aU(1- e).

We use (621) and (612) to eliminate G

deriving y , we have
1

and U; simplifying and

Ay = - + --B,
1 2 -4
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in which

A

2

K

s Yl_ ch

_nd

B

r 25118 + - • K
s 5 xI

4a +Y • +k +k n

ch b

2

650. We put k = I, e = 0.5, K = 60 kg/mm , 7 = 7.5 (iron or

u

steel), y = y , k = 3/8 [see (634)], k = O, 8 = 0.2 mm, n = 6,

3 i ch b s

I] = i, and a = 0.001; 2y2/5 x2 is neglected, as before.
I I

Then y = 54.8 m or y = 8.7 m, so the shell can be 109.6 or
i I

17.4 m in diameter.

651. The tinplate assumed is 1-1/2 times thinner than the

ordinary commercial plate used for cheap pans and so on. The shell

together with its massive parts may be considered practicable even

for iron 0.15 mm thick, which is also much used and which I have
tested.

Putting _ = 0.15 mm and using the conditions of (650), we have
S

Y = 57.26 m and y = 6.26 m.

I i

The lesser diameter is then about 12-i/2 m, which is only
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slightly more than that of recent (1907) airships, e.g., Lebody's.

652. A further calculation with 5 = 0.3 (ordinary tinplate)
S

gives y = 48.89 m and y = 14.61 m.

I i

These dimensions are vast for the shell of the first air-

ship (2y = 29.22m).
1

653. We put y = 2.5 and K = 20 kg/mm 2 in (649) for an aluminum

shell; then with the conditions of (650), but with 5 = 0.15 mm and

S

0.30 ram, we have y = 1.93 and 61.57 m (0.15 ram) and y = 4.00 and
1 1

59.50 m (0.3 ram).

The least diameter of an aluminum airship with a shell 0.15 mm

thick is then about 4 m.

654 . We see from (649) that A2/4 > B; if this is not so, the

shell will be too heavy, so the airship will not rise. From this we
have

5 <

s 20n 7 L"I + +_ • p l]

Then the conditions of (650) give that 5 < I.ii.

S

The greatest thickness for the shell under these conditions in

case f is thus i.ii mm.

Then y =A/2, so we get the half-height of the thickest shell
i

as y = 63.5. The other limit, 5 = O, gives y = A and y = O.
I s I I

The thickest shell will thus have 2y = 127 m and the thinnest
i

2y = O.

I
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655. The formulas of (649) give two solutions for the height

of the shell, but this does not mean that only these two sizes are

possible under given conditions, e.g., those of (650). In fact, we

can put (649) as

C / C2 D

y =-+_ ,
1 n n n

in which C and D are taken as constants. For a given n we find

only two values for y ; e.g., 57.26 and 6.26 m, as in (651).
1

But if n is increased, and this (increased safety) is

permissible, then the C2/n 2 term will decrease more rapidly than

D/n, so the limits of y will come closer together. The two roots
1

for y become the same when C_/n2o, = --D/n.

1

From this formula we see that this occurs when

C2

m

D

For instance, for the case of (651) we have n = 12.6, or an

increase by a factor 2.1 in the safety relative to the previous case,

in which n was 6 [see (650)]; y will be C/n = 15.12 m.

1

We can therefore make shells of heights not only 114.5 and

12.5 m, as in (651), but of all intermediate sizes, which will be of

higher safety factor.

656. There are ways of reducing y in cases a-e (633, 643, and

1

649) other than increasing n, such as the following:
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I) reduction in e (relative weight of shell), which in part
is favorable, because more upthrust will be available for the pas-
sengers, cargo, and so on; if the proportion going to the shell is
halved (e = 0.25 instead of 0.5), the height is reduced by a factor

2, but the weight of all the other parts may be increased by 0.25 of

the upthrust.

2) a less strong material may be used (K can be reduced);

3) the pressure y in the lower part of the shell can be in-

3

creased, which gives a gain in stability;

4) the density 7 may be increased for a fixed K; and

finally

5) k + k + k may be increased (in accordance with the

ch b

design of vessel), which also reduces y . The height 2y is not
1 1

dependent on a (except in case f), namely is not dependent on the

density difference between the light gas and air.

The dimensions of course increase if the quantities are

altered in the reverse w_y. For instance_ doubling of the strength

of the material involves a doubling of the dimensions and an 8-fold

increase in the upthrust.

To conclude this section we may note that metal airships are

the more rigid the larger they are.

The least size for an iron shell is 12.5 m in height, or
4 m for an aluminum one.

An aluminum shell 12.5 m high is very rigid (in view of its

massive parts, the shell also being nearly as thick as roofing iron).

Schwarz's and Dupluie de Loma's airships were larger; the

above size is close to that of the current (1907) French airships.

Schwarz used aluminum 0.2 mm thick in his airship, which is

less than half the thickness (0.45 mm) I now propose.

Zeppelin's and Schwarz's airships had internal lattice

structures, which provided rigidity but consumed much of the up-
thrust.

This rigidity and lack of flexibility in the shell make it

extremely sensitive to the slightes} _hocks, which in part may be

why the Zeppelin trials were carried out over water.
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XIV. MOTIONOFANAIRSHIP*

A. Independent Uniform Horizontal Motion

By independent motion I mean movement of the dirigible in a

stagnant atmosphere (in the absence of wind). Such motion may be hori-

zontal, vertical_ or inclined and may be performed by the use of en-

gines or the upthrust of the vessel (positive or negative) when this

is not balanced by ballast.

In this chapter I consider only horizontal motion produced by

the power of the motors.

The force on a plane moving along a straight line perpendicu-

lar to itself is given by Poncelet's theoretical formula as

da- • sv2 (1)
2g

in which da is the density of the fluid, g is the acceleration due to

gravity, and S is the surface area of the plate, which is of small

length or not elongated.

Some have used far from accurate experimental results to as-

sume that the resistance of a medium is proportional to Sn, with

n > l; if this were so, calculations on the speeds of water craft

would be incorrect, but this is not found to be so. The resistances

offered by air and water are 3 in fact, found to show an unusual and

unexpected similarity.

Calieter and Colardo found that the forces in their experi-

ments were only slightly greater than those predicted by Poncelet's

theory (by a factor of about 1.2); the lengthwise force on the bird-

shaped surface of an airship will be much less. Let it be less than

that given by (1) by a factor uf; then the force exerted on the

vessel in the direction of its longitudinal motion is
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_guf

(e)

in which 7a is the density of air; uf is the mean form factor of the

body, rudders, gondola, supports, and so on; F is the sum of the
P

projections of these parts on a plane normal to the direction of the

flow; and v is the flow speed.

P consists of two principal resistances: that of the body Pl

and that of the other parts P2" We have

PI = --
2gu I

(3)

and

 Z2v2 (4)
P2 = "--'

2gu2

in which uI and F I are the form factor and cross-section (projection)

of the body, u2 and F 2 being the same for the other parts.

Comparison of (2) with (3) and (4) gives

F F I F2P

uf uI
(5)
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Of course_ uI is dependent on the elongation xl/y I of the air-

ship, on the absolute dimensions_ on the shape, and on the speedj it

is thus a function of four variables: uI = F (xl/Yl, Xl_ v, shape).

My experiments indicate the same as regards u2 (for the other

parts of the vessel). The useful or minimal work required per unit

time to maintain the uniform motion is Pv j but the work produced by

the vessel's engines is very much greater, because the propeller sets

the surrounding air in motion, so part of the work from the motor

produces a useless perturbation in the medium around the screw.

The work produced by the engines must therefore be greater by

a factor kh (in fact 3 two) and so is

N = (6)

in which kh is dependent on the diameter and performance of the screw
o

(with respect to the total resistance of the airship) as well as on

the position relative to the body_ kh approaches unity as the design

is improved, the diameter is adapted best, and the position is im-

proved.

F is the sum of the projected areas of the parts of the air-
P

ship on a plane normal to the direction of motion_ so

2

Fp = (7)

in which Yl is half the height (radius of the largest cross-section

of the expanded shell) and k is a dimensionless factorj this should_
F
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on the one hand_ be less than unity, on account of the deviation from

circular form in the cross-section, while on the other hand it should

be larger than unity_ on account of the projection of the chains,

ties, controls, keel, and other parts.

My large metal airships have _ close to unity_ because the

chains are not numerous (or are completely covered) and are of good

cross-section as regards resistance; the gondola and the control

surfaces may be considered as almost flat.

We eliminate P from (6) by means of (2) and then S by means of

(7) to get

(s)
v= w7 k k y2.

aFhl

Here

N=E n ' kM • Q,
(9)

in which E is the energy (work) produced by the vessel's engines per
n

unit weight (kg) in unit time (second); Q is the upthrust; and kM is

the motor factor (part of the upthrust taken by the motors).

The upthrust for a parabolic airship is

16
(i0)

in which k is the factor for the volume U filled with gas (because
u
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the shell is not fully inflated)_ x I is half the length of the vessel

(rather, shell)_ and 7g is the density of the gas in the shell.

Weeliminate N and then Q from (8) by meansof (9) and (lO) to
get

It must be pointed out that this parabolic volume is very
sharp-ended_ imperfect_ and (as regards upthrust) unsuitable.

Actual airships have muchgreater completeness of water dis-
placement (the naval term), but the present shape has the advantage
as regards resistance.

In speaking of a parabolic shape, I have in mind mainly the
cubic displacement; the shape of the body can be different, and the
midsection (area of greatest cross-section) can be brought somewhat
forward towards the nose.

The following conclusions are drawn from (ii):

A. The independent forward speed of the vessel is not de-
e'pendent on 7a, it is governed solely by the ratio 7 7a of the density

of the material filling the vessel to the density of the surrounding

medium*.

This ratio is that of the light gas to that of air in this

case; it remains the same if the shell expands and contracts freely _.

This means that the speed of the independent motion does not alter

*This is based on the assumption that E
n

of variation in _7a"

remains unaltered in spm_e

**Even in spite of changes in gas temperature and pre_sure_ if these

are the same inside and outside the shell.

1
1

i
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when the balloon rises or falls, if we neglect any change in E and
n

in the form factor arising from volume changes in the gas or from

variation in kJ_, which variation is slight.

If we use (Ii) to compare vessels of the same xI floating in

any medium (rarefied or very dense air, or even water), we find that

a water craft (steamship) has a very small advantage over an air one

(airship). The factor (i - 717a ) for the latter filled (say) with

hydrogen is 13/14, whereas for a steamship it is almost one, for a

sea-goingvessel is filled with air_ whose density is minute relative
to that of water.

Extraction of the cube root in (ll) gives us that the speed of

the water vessel will be larger by TJ37a, or 1/$2, than that of the

air one containing hydrogen. In deducing this we assume that the

other quantities appearing in (ll) are the same, which can scarcely

be said to be the case for uf (form factor), for example.

If our atmosphere were lO, 100, or 1000 times denser or more

rarefied, airships of the same size and of the same construction

would move neither more slowly or more rapidly as a result.

This involves the assumption that E remains unaltered, of
n

course. This can be insured if the change in density is slight by

adjustment of the shaft speed, alteration of valve sizes, increasing

the draft in furnaces of steam boilers_ and so on.

But there is a limit to this. We may assume that E increases
n

in proportion to the density of the air (oxygen content) for internal-

combustion engines generally but tends to decrease also on account of

the lower speed of escape from valves and pipes, on account of the

higher density; the result is that the shaft speed in inversely pro-

portional to the square root of the air density.

The final result is that E probably increases roughly in pro-
n

portion to the square root of the density of the medium supporting

the combustion, so in (ii) we put

. 7a .
(lll)



326

For instance, the density at a height of 12 versts is 4 times

lower (7 /7 = 1/4_, so E is reduced by a factor 2 and the speed

a al n

v of the airship by a factor

6_' --J 4 = 1.26,
7a I

7
a

or by 20%.

In these formulas E denotes the energy of the motor corres-

n

ponding to the density 7 of the medium.
a

Thus we see that the variation in E for dirigibles of identical
n

size and similar design at various heights results in a speed pro-

portional to the sixth root of the density of the medium that supports

the combustion. The table following expresses this.

B. The speed of the vessel is dependent on the x dimension

[see (ii)]. 1

The form factor u alters little in response to change of size
f

if the dimensions increase in proportion, i.e., if the vessel re-

mains geometrically similar as it enlarges or shrinks.

In this case

x --y (12)
1 1
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in which X is the constant ratio of the length of the shell to the

height. This shows that the independent horizontal speed of the air-

ship increases with the size; conversely, models of airships cannot

reach high speeds, and their reduction u accentuates this.
f

TABLE 14-i

Height (of flight) of

dirigible, km

rarefaction, % /%

a al

relative speed

% reduction in speed

0 1

1 0.9

1 o.98

0 2.0

2

0.8

0.96

4.2

4

0.636

0.92

8.7

0.91

9.9

lO

0.39

0.85

10.78

A set of similar dirigibles varying greatly in size will move

with different speeds, which are proportional to the cube roots of

their linear dimensions [see (ll)].

The speed is also increased if the length 2x is increased
1

while keeping the height 2y unchanged provided that u increases or
1 f

remains unchanged.

This is applicable to very short (not elongated) airships; a

highly elongated shell gives the same speed when 2x is increased, be-
1

cause u is reduced almost exactly in proportion to the increase in
f

2x .

1

U X .

fl

In general, any change in speed is governed by the change in
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If a destroyer could attain a speed of 70 km/hr, an airship
of the samesize under the sameconditions could reach the same
speed; if it were larger, its speed would be correspondingly greater,
provided that the motor increases correspondingly.

For instance, the destroyer might be 30 m long and the airship
240 m (8 times larger), so the speed of the latter would be at least

2 times greater, or 140 km/hr. The dimensions of the largest possible

metal airships are larger by a further factor 8, so their independent

speed under identical conditions would be larger by a further factor

2, or 280 km/hr, leaving aside any improvement in u and consequent
f

increase in speed from this cause.

C. Formula (ll) further shows that the speed v is proportion-

al to the cube roots of the motor energy E , of I/k (representing

n h

screw perfection), of the form factor u , and of the relative weight
f

k of the motors. For instance, an increase in E u k by a factor 8
m n f m

increases v by a factor 2.

D. The speed of the vessel remains unchanged if the product

E u k is unaltered; so, if we assign a decreasing fraction k of
nfm m

the upthrust to the motors, we must either increase the size of the

vessel in the same ratio or increase the energy of the motors leav-

ing the size unchanged, if we are not to lose speed. Conversely, if

we wish to reduce the dimensions of the Vessel by some factor, we must

either devote a larger fraction k of the upthrust to the motors or

m

increase the energy E of these by the same factor in order to leave

n

the speed v unchanged.

For instance, k E must be increased by a factor 4 if we

m n

wish to reduce the size by a factor 4 without affecting the speed;

this can be done in various w_ys, e.g., by increasing the energy by

a factor 2 and devoting twice the proportion of the upthrust to the
motors.

E. (ii) shows that the speed is also dependent on the

density of the gas in the airship, being proportional to

IIi
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7a

This relation is represented by the following table, in which

the density of the light gas varies from zero to unity (i.e., up to

the density of air):

TABLE 14-2

g a

V

I
0 I0.I

f

I

1.OOLO.97

I

0.2

0.93 0.89

_. - [ .... .

I !

0.4 1o.5 [0.6 0.7 0.8 Io.9 ll.O

I

0.84r0.79 0.74 0.67 0.581 0.46 lO

i
I . | 4

The second line shows that the forward speed decreases ex-

tremely slowly as the density increases (this speed has been taken

as unity for an impossibly light ideal gas, namely one of zero den-

sity). A gas density of O.1 (nearly 1.5 times that of hydrogen) re-

duces the speed by only 3%; a density of 0.4 (near that of heavy

illuminating gas) reduces the speed by 16%, or by about 1/6 of the

ideal value Even for the density of air heated to lO0 ° the speed

is reduced by only 33%, or 1/3.

On the other hand, increase in gas density is accompanied by

other very important defects: the upthrust decreases in proportion

to 7 " T and hence is represented by the sequence l, 0.9, 0.8, 0.7,

g a

0.6, 0.5, 0.4, 0.3, 0.2, 0.i, and O.

This fall in upthrust requires corresponding reductions in the

weight of shell and so forth, which makes construction very difficult.

The useful (free) upthrust (e.g., the number of passengers and so on)
is also reduced in the same ratio.

Equation (ii) enables us to find the absolute value of v.
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First we take fairly ideal conditions: g = 9.8 im/sec2,
E = 25 kg-m per kg weight (which implies a weight of 3 kg per
n

horsepower, or 75 kg-m/sec), k = I/8, u = 50, x = 105 m (my

m f i

iron airship for 200 passengers ,/of size equal to a large steam-
ship), k /k = i, k = 2, and 7 /7 = 0. I; then (ii) gives v =

u F h g a

= 53.7 m/sec or 193 km/hr*.

The dimensions of the largest possible metal airships are

i0 times larger, so these would have speeds of 116 m/sec or 417 km/hr

under identical conditions.

Of course, such speeds and airships can only be dreamt of at

present. Now we come down to earth to ordinary dirigibles and im-

pose for them strict conditions, which from my point of view it is

difficult to doubt as to their applicability. E (motor power)

n

varies greatly; it ranges up to 75 kg-m/sec per kg for gas or

benzine motors at present. Airships presently use benzine motors

of power 3 or 4 times lower/(20-25 kg-m). The specific weight of
the engine may be put as 75/E , which is the weight of the motor

per horsepower, n

For our calculations we may reasonably assume a specific weight

of 4 kg per hp (E of 20 kg-m/sec per kg weight); k (relative

n m

weight of the motors) may be about I/8 of the total upthrust of the

vessel. We assume an airship of displacement I0 000 m 3 (upthrust

i0 tons ).

*My metal shells for dirigibles are protected in nine countries

(Russia, Germany, Austria, Great Britain_ the United States, and so

on); the patents were taken out in 1910-1911. Improved all-metal

shells without soft folds cannot be protected, because the laws of

all countries forbid the grant of patents to inventors who have al-

ready published their inventions in the press, as I did in 1892 and

even earlier (in the 189Os), when I gave a report of my invention in

Division 7 of the Imperial Russian Technical Society.
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3
The volumes of current dirigibles* range up to 20 000 m , and

the displacement is still tending to rise, so this l0 tons is not an

overestimate of the lift. We assign 1/8 to the }notors, which gives

them 1250 kg and hence a power of 25 000"* kg-m/sec or 333 hp, which

does not exceed real values.

Experiments (mine and others') indicate that u (form factor)
f

increases with the size and speed of the airship.

Even a model 33 cm long and i0 cm wide moving at 4 m/sec had a

form factor of 14. No lesser value should be assumed. In my view,

good shapes should give values up to 50, as for ships.

The length 2x for moderate volumes is about 100 m in practice,

1

so the average half-length x is about 50, which I take as basic
1

value. One has already heard talk of planned airships of displace-

3

ment 50 000 to lO0 000 m , which correspond to a large ocean-golng

steamship of length about 200 m.

My calculations indicate that the strength of metals is such

as to allow dirigibles up to 2000 m in length; I do not know

whether these are possible in other respects_ but my calculations

show that they are as regards strength of shell.

Here k (the part filled with light gas as a ratio to the

U

volume of the fully inflated airship) is taken as 0.7, so 0.3 of the

maximum volume (nearly ]/3) is taken by airbags or is left for ex-

pansion during ascent. This reserve for expansion allows the air-

ship to rise to heights of at least 2 kin.

We put k F as 1.4, which means that the resistance of the

stays, gondola, rudders, and so on is taken as eqi_al to the re-
sistance of the shell filled with hydrogen; this is excessively

generous as regards my metal airships and is quite adequate for

ordinary dirigibles.

The values are therefore: u 14, y = 0.0012 (t/m 3= ),
f a

*The British Naval Airship i; construction has begun afresh.

**The mss had 201 250 (Editor).
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7 = 0.0002 (t/m 3) (a gas 6 times lighter than air and slightly
g

more than 2 times as heavy as hydrogen), k = 0.7, k = 1.4, E = 20
u F n

(specific weight of motor 3.75 kJhp), k = _8, k = 2 (k is even
m h h

ess for aeroplanes and ranges down to 1.3, because the efficiency
k of the screw ranges up to 0.75; but for an airship I assume
h

only 0.5 at present), x = 50 m (2x ranges up to 15g m in current
1 1

dirigibles, as i_ the Naval Airship 1 in Britain). Then from (ll) we
have v = 19.68 m/sec or 70.8 kin/hr.

I have madesomeother calculations on this airship. The
length of the shell or dirigible is 2x = lO0 m; the height when

1
fully inflated, 2y , is given by (12) with the fineness ratio put

1
as seven, so 2y = 14.3 m.

1

The volume U is given by (lO) as

2 2

U = 16/15 Wk y_x = 5986 m .
U±I

(13)

This equation also gives jus that A (upthrust of the dirigible)

is 5986 kg; of this we assign 1/8 to reserve and the same to lifting

H men, whose number (taking each as 75 kg) is then

Q
H - " k = i0 men. (13)

75 M 1

The weight of the motors and the spare lift is

l i

I

i
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Qk = 748 kg.
M

(14)

The power (horsepower) is

RE
P - = 199.5 hp (15)

75

The power per passenger is thus about 20 steam horsepower.

The force P of the opposing airstream on the entire vessel

is give_by (2)a_ (7)as

_kFYa 2 2

P = .-- yl v
2g "uf

= 381kg. (16)

The numbers have been rounded off a little to give the fol-

].owing table containing corresponding values for other sizes of

airshi_ (lO0 to 2000 m long and 14 to 286 m high). In all cases

k = 1/8, with about 20 hp per passenger.
m

The columns give 2x (length of shell of gasholder), 2y
1 1

(height), U or Q (volume of gas in m3 and lift in kg), Qk (L/8 of

m

this lift, or weight of motors, the same going to passengers and to

reserve lift, total 3Q/8)*, p (power of potors, in steam horsepower),

H (number of passengers), v (speed in m/sec), v (speed in km/hr),
1

*Leaving 5/8 of the upthrust for shell, gondola, and so on.
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and P (lengthwise force of opposing airstream on whole airship in kg).

The preceding table shows that the speed increases con-

tinuously with the size of the airship; (Ii) shows that the speed

remains unchanged if k x is constant, which occurs when k varies
m I m

in inverse proportion to x .
i

If 70 km/hr is taken as sufficient for practical purposes, then

k (part of upthrust assigned to motors) can be reduced in accordance
m

with the increase in x (size). This then gives an economy in horse-
1

power per passenger, as the following table shows.

TABLE 14-4

b

Height 2y 14.3
I

relative

weight of

motors, k
m

power per

p_SSenger,
H

power p

17.1 21.4

!

28.6 42.9i 57.1 85.7 142.9

|

O.125T0.I04 0.833 0.062 0.042 0.031 0.O21 0.012

2O

200

i

16.7 13.3 i0.0 6.7 5.0

, !
288 j 45o 18oo i 18oo i32oo

_ ! 1
_ , j

Z

3.3 '2.0

' i
7200 20000

i

285.7

0.006

1.0

8oo0o
!

The first line gives the height of the middle part of the shell

(m); the second, k (part of upthrust assigned to motors); and the
m

third, p/H (horsepower per passenger). This last is one for an airship
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having the height of the Eifel tower. The force from the airstream

will also be much less than the P given in the previous table. We

should not forget that the speeds of these vessels are constant

(70 km/hr) only when there is no very strong opposing wind to be

overcome.

Such speeds are hardly reached by present dirigibles, but

there are reasons for this: the vast resistance of the stays and

bubble-shaped stabilizers, the poor shape* of the body, which often

takes the form of a sausage or pointed cylinder (it would be of in-

terest to trace the evolution of the shape in steamships). Further,

there are the inevitable folds in the soft shell, the airscrew (of

size insufficient to correspond to the vast resistance of the shell),

the stays, stabilizers, and so on.

I believe that the speeds listed in the above two tables will

not merely be reached when all these defects are removed but will

also be greatly exceeded.

Formula (Ii) shows that E k must be increased if we wish to

n m

reduce 2x (which has advantages and can be done if organic materials
1

are used for the shell) while retaining the speed of 70 km/hr.

If, for example, we wish to reduce the I00 m of the shell to

50 m, we can do this either by assigning twice as much lift to the

motors (I/4 instead of ]/8) or by doubling the energy of the latter

(use a specific weight of 2 kg/hp instead of 4). Alternatively,

both could be increased by a factor _, the speed of 70 km/hr being

retained with a consumption of light gas reduced by a factor of 8

3 3

(750 m instead of 600 m ). Airships smaller than this are not general-

ly made.

The formulas enable us to show that an airship of payload equal

to that of a steamship has the higher speed. We eliminate x from (ll)

1

on the basis that

1 1

*Usually deviating from the underwater shape of a steamship.

f
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in which k is the ratio of the length of the fully expanded shell to

the greatest diameter. We then put that the lift Q of (lO) corres-

ponds to an unaltered value of A:

2
A_-l--6 k(z -z

15 U a g ll

We eliminate x and y from (ll) by means of these two equa-
l 1

tions to get that

v Euk

15 k kF P f 16nk _7
h U a

(l F)

This shows that the speed for a fixed upthrust A falls as we

increase the density of the air (Y) or of the supporting medium

a

generally. For instance, consider three vessels of the same payload

(e.g., ten passengers) one floating in the air near the ground,

another in water, and the third at a height such that the air is

9 r-----
729 times less dense; the last has a speed ff 729 (about 2) times

greater than that of the first, while the second has a speed about

2 times less than the first. In other words, the speed of a water

craft for a given payload A is about half of that of an airship

floating at ocean level, while airships designed for constant pay-

load but various heights will have speeds inversely proportional to

7al/9and hence higher speeds in the higher layers of the atmosphere.
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Weshould not forget the conclusion of (ii) on the effects
1

of the density of the mediumon the energy of the motors.

Formula (17) showsthat the speed v is proportional to _E_-- ;

(Ii I) gives that

7aI

Then the speed v is proportional to

or to J 7a •

This means that v even falls as the density decreases (for

a given A)_ but only very slowly. For instance, the density of the

air is reduced by a factor 4 at a height of 12 versts, so the speed

of an airship is reduced by a factor _J_r 1.08, namely by 7.4%.

The table following expresses this.

(17) also shows that the speed is proportional to the ninth

root of A or of the displacement (tonnage). This shows that any ad-

vantage in this respect from increasing the volume of the airship is

slight; but large dirigibles have some very important advantages:

it is possible to provide a thick metal shell (which is cheap, in-
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combustible, impermeable to gases, and unvarying), a gondola filled

with passengers, cheap transportation, solid and reliable motors to-

gether with stability of all kinds (e.g._ a closed incombustible

gondola), lift adjustable by heating the light gas (hence ready

control of vertical motion), and so on.

TABLE 14-5

Height, km

speed reduction,

1

0.7

I

2

1.4

3

2.1

415
I
I

2.91 3.3
I

I

lO

5.9

T_e above table shows that the fixed speed (70 km/hr) leads to

reduction in k (proportion devoted to motor) as the size increases.
m

This also has advantages, for it increases the net upthrust, which

can be utilized to increase the reliability of the motors (which

are already reasonably solid at 4 kg specific weight, though) and

of the other parts or to increase the payload.

For instance, 1/8 of the upthrust goes to the motors when the

height is 14 m, but only 1/160 (20 times less) when the height is a

little less than that of the Eifel tower, and this without loss of in-

dependent horizontal speed.

The vast sizes of airship in these tables are, of course,

merely speculations, although they are based on strictly scientific

calculations not given here; but we have seen that life has often

made scientific dreams into realities. For instance, the phonograph

unexpectedly and simply solved the problem of the talking machine

thereby surpassing Helmholtz's detailed theories. Spectral analysis

solved the problem of the composition of heavenly bodies, although

the possibility of solving this problem even in the future had been

denied by the most learned thinkers. Much might be said on this.

I am not the only one to have thought of large airships; Giffard drew
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up plans for one of volume 220 000 m3. Although an idealist, he was

also an experienced practical engineer who had personally tested out

his ideas and spent a fortune on it. Blindness and suicide ended his

life and work; but now engineers are planning dirigibles of volume

3
50 000 m . The tendency to increase the volume of airships is not de-

clining_ but difficulties arise over lack of strength, combustibility,

and cost for the current organic shells, quite apart from doubts over

the need for such vast expense. The general public knows little about

airships, and for this reason the powers that be do not support the
work.

B. Inertia of a Vessel

(Inertial Range )

It is said that an airship is a bubble and does not have high

inertia; give such a bubble a push, and it will travel only a short

way before coming to rest on account of the resistance of the air and

its low kinetic energy. On the other hand, give a push to a massive

body sufficient to give it the same speed, and it will travel far

(e.g., on wheels or on ice skates), covering a considerable distance

before it stops because it has lost its kinetic energy in overcoming

resistance.

This is the kind of inertia I have in mind.

But the matter is not so simple as it might seem at first

sight; we must know the effects of shape, size, and so on.

Let us compare the kinetic energy (vis viva.) of our rapidly

moving airship with the resistance the air puts up; this will give

us an idea of the massiveness (inertia relative to that of the medium).

We take the general case, in which the weight of the vessel is

not equal to that of the medium it displaces, which makes it applicable

to living and dead aeroplanes (i.e., to insects, birds, and artificial

flying machines ).

The kinetic energy is mv2/2g, in which m/g is the mass of the

vessel. If the shell has the smooth parabolic form of (13), we have

i

!
!
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2
v 16 2 v2

m-- = --WYlXlk_v---U "
2g 15 2g

(18)

Here y is the mean density of the vessel (total weight divided
v

by the volume).

From (2) and (7) we have the resistance of the medium as

WkF 2 2

P - Yl v •

2guf

(19)

The inertness (inertial range) of the vessel is expressed by

dividing the kinetic energy by the resistance of the medium at that

speed.

Dividing and simplifying the last two equations, we have

this as

2 k U Yvmy 16
--.p= ..... ux.

2g 15 kF Ya f I

(20)

The result expresses the distance traveled by the initially

moving vessel if the resistance P does not fall; the engine is, of

course, not operating.
The formula shows that this inertial range (relative kinetic

energy of the moving vehicle) is directly proportional to:
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!) the dimensions (x);

1

2) the form factor u ; and

f

3) the relative density 7/7a (ratio of the mean

density 7 to the density 7 of the surrounding
v a

medium)*.

For other shapes (sphere or still worse) the relative energy

will be small compared with bodies of good shape (relative to the

resistance of the medium, that is).

It will also be small for small vessels (x small) because
I

the form factor is low for small x , no matter how good the shape
1

may be, on account of the need to overcome friction. We may say that

this formula indicates that the inertial range of a large flying

machine (other things being equal) increases with the size.

We now compare an aeroplane (with a closed body, such as

Newport's ) with an airship. On the one hand, the aeroplane has the

advantage, because _ /_ is large; but u is much less, especially
v a f

since x is much smaller than for a gas-filled vessel, so the problem
I

is rather complicated.

If we assume the same inertial range for all vessels, the above
equation shows that u , x , and _ /7 are inversely proportional one

f i v a

to another. For example_ in order to match as regards inertial range

a bird (2x = I0 cm and _ /_ = 500) to an airship (relative density

i v a

one) it is necessary for the latter to have u x 500 times larger

fl

than for the bird. We assume that the form factor is 5 times that

for the bird; then 2x must be I00 times larger, so the length is
I

* The formula also applies to artillery shells, vessels, and
water animals.
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I000 cm, or I0 m. The bird is small, so the resistance of the wings,
as assumedin (5), is not far from the true value.

The little bird and the small model airship are thus of the
sameinertial range.

If now we replace the bird by an ae_roplaneof the sameform
factor but with a length of I0 m and a 7 /7 not less than 80, the

v a

inertia (inertial range) becomes that of an airship 160 m long.

This is the maximum size for existing airships; their gas

3
displacement (tonnage for ships) is 20 000 m . It could be that

highly pointed airships could now equal the aeroplane in this re-

spect but the airship has other major advantages, since it requires

no energy to support it in the air.

I therefore assume that the form factor of an aeroplane is so

low relative to that of an airship that it is obliged to have wings,

whose shape is such as to imply a large additional resistance. In

addition, the small size and far from perfect present shape of the body

also reduce the mean form factor. The relative energy of motion for

the largest (in size) metal airships is not only undoubtedly larger

than that for insects and other flying things; it is also larger

than that for even the best aeroplanes.

The _ /7 of the above formula becomes one if we wish to corn-
Y a

pare water craft one with another or with submarines or aquatic life,

because the mean density of the balanced vessel is equal to that of

the surrounding medium. The same applies to airships in vertical

equilibrium at different heights, so in place of (20) we have

2 kUmv 16

: p = -- . __ r UfXl"
2g 15 k

F

(21)

This shows that the inertial range is independent of the medium

(7 = F ), so this quantity does not appear; this means that the in-
v a

ertial range of a water craft is equal to that of an airship provided

that x and the form factor are the same, in spite of the vast dif-
I



344

ference in densities as between the media in which they float.

The relative inertia of a steamship is in no way greater than

that of an airship under the same conditions.

But the inertial range of any vessel is proportional to its

size x and form factor u ; the values for large fish and large
1 f

dirigibles are greater than those for small ones or those of less

perfect shape, other things being equal.

The mean density T of a steamship is to be taken as the mass
v

divided by the volume of the underwater pater.

The inertial range of (20) indicates the capacity of a vessel,

missile, or living being to coast a certain distance by virtue of its

speed v on account of its inertia. We now examine this more close-

ly. We have seen that the inertial range would express the distance

the body could travel if the resistance were to remain unchanged in

spite of the loss of speed. This is approximately true for a body

moving in accordance with its inertia on a plane in a vacuum, being

subject only to frictional resistance and gravity.

The work done by a vessel in rectilinear motion over a dis-

tance dx is Pdx, in which P is the resistance of the medium, or

the force on the vehicle in the direction of motion. On the other hand,

the loss of kinetic energy mv2/2g consequent on a fall in speed dv

caused by the resistance is found by differentiation as

v
-m" -" dr.

The law of conservation of energy now gives

V

- m - dv = P • dx . (22)

g

we eliminate m and P by means of (18) and (19), simplify,
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separate the variables, integrate, and determine the constant to get

32 kU Fv Iv_l_
x = -- ..... u x In tv_ ' (23)

fl
15 k F ya

Here v is the initial velocity and v the final one, the

1

logarithm being the natural one.

Consider motion to rest, namely v = O, then x = _, so the body

travels an infinite distance and hence never stops.

The formula shows that the distance traveled is constant for

a given vl/v , no matter what the absolute values of the speeds; but

it is directly proportional to the relative inertia (inertial range)

of the vessel [see (201)].

In other words, the vehicle travels the same distance while

losing a given fraction of its initial (large or small) speed; but

this is directly proportional to the size of the body, to 7 /7 , and

v a

to the form factor.

This distance is also independent of the absolute density of the

medium, being governed solely by the ratio of this to the mean density

of the vessel. For instance, a water craft and an airship travel

equal distances while losing (say) half their inertial speed, if con-

ditions are the same for both. We have T = T for steamships, fish,
v a

and airships, because the mean density is that of the medium. Then

we have from (23) for these that

@

32 kU FVl_

X - UfX 1 in _#. (24)

15 k F
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For instance, k /k = i, u = 50, x = I00 m, and v/v = 2;
u F f i I

the last denotes loss of half of the initial (arbitrary) speed v .

i

This gives x = 7392 m, or about 7 versts.

The calculations relate to an airship carrying 200 passengers

or to a seagoing steamship of the same size. The conditions of the

above are fairly ideal; the above are the worst conditions: k =

u

= 0.7, k = 1.4, u = 14, and x = 50 (airship for I0 men, dis-
F f i

placement 6000 m3); for v/v = 2 we have x = 517 m (range of 1/2 a

I

verst ).
The vessel retains L/2 its initial speed (say, i0 m/sec) after

covering this distance; then it can cover the same distance (500 m)

while retaining half again (5 m/sec), as (23)and (24) show.

But the motion becomes ever slower and ultimately inappreciable.

In (22)

= v • at, (25)

in which t is time in seconds reckoned from the instance when the

vehicle had a speed v .

I

We use (22) to eliminate dx and integrate to get

15 kF 7a v v
1

The time taken to reach a given v /v is thus proportional
1
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v/ (inertial range, whether it be a vessel, airship, steam-.to UfXl7 7a

ship, glider, bird, fish, insect, artillery missile, and so on)and

is inversely proportional to v ; no matter what v may be, the time
I i

increases as v (or the final speed) decreases, becoming infinite

when v is zero (total loss of speed).

T.otal stoppage thus takes theoretically an infinite time.

This treatment is true only in so far as the law of resistance

used is correct (resistance proportional to the square of the speed),

which cannot be taken as rigorously so; hence the conclusion is only

a rough picture of the actual effects.

But the picture is the more nearly correct the closer the

final speed v is to the initial speed v .

I

C. Relative Resistance, Specific Surface,

and Specific Volume

Some calculations to elucidate the controllability of an air-

ship appear in order here.

First we find the area of the largest cross-section of the

shell per passenger.

The total area of the projection of the vessel on the plane of

the cross-section is denoted by F , as before. This is
P

2
F =wy k .

p IF

But the good shape of the vessel means that this expression

does not give us the resistance; F must be divided by the form
P

factor u , which gives us the area equivalent to the resistance (at
f

the same speed, of course):
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F
p _kF 2

_ y

1
u u

f f

(27)

The weight of the passengers is a fracti0n k of the up-

P

thrust [see (io)1; let q be the weight of a passenger, so the

P
number is

[H = ] Qk_

q
P

(28)

and the resistance area per passenger is, from (7) and (lO),

Uf p 16k (7a - g)xU i

• u • k
f p

(3o)

This shows that the equivalent specific resistance area varies

in inverse proportion to x , to u , and to the difference between
1 f

7 and 7 •
a g

The latter would appear to show that rarefaction of the medium

is unfavorable, but this is not so. It is true that this specific

area increases as the air becomes more rarefied, but the absolute re-

sistance (the actual force) remains unchanged, because the rarefied
medium has a lower resistance.

First I take ideal conditions for use in (30): k /k = l,
F u
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q I00 kg, k 0.i, T - T = 0.001 t/m 5= = , x = i00 m, and u = 50.

p p a g 1 f

Then the relative resistance area (in the form of a plane) is

2
0.19 m . This appears to be a paradox; how can the force on a part

of the airship and on the whole man be less than that on the surface

area of his body, which is several times larger than 0.19 m 2: The

fact is that the passengers are enclosed in a gondola, whose shape

is such that its resistance is quite small and in no case equal to the

resistance of the human bodies it encloses. This shows why the sur-

face area of the men is not involved.

The resistance area is even less for my largest metal airships,

2

being about 0.019 m per man, which is the area of a square plate of

side less than 14 ca. This is a plate not larger than the palms of the

hand s.

Now I take a very unfavorable basis for determining the speci-

fic resistance from (30): k = 1.4, k = 0.7, q = lO0, T - T =

F u p a g

= O.OO1, x = 50 m, u = 14, and k = O.1. This gives 2.68 m 2 for the

1 f p

resistance area, which is fairly substantial. The result for the

2
largest airship is 0.134 m , or about L/8 m2. In any case, given a

vessel of sufficient size and perfection, the specific resistance area

represents less resistance than does the human body not enclosed in

a gondola.

This means that, if the passengers were obliged to produce all

the power needed to produce the forward motion of the vessel they are

flying in, they would have to produce much less energy than that

needed to move with the same speed in the same medium independently

("by themselves, on their two legs").

In this motion of the man I neglect any resistance other than

that of the air.

This can also be put as follows: if a man were to lose his

weight, then on moving in air as does a bird (or as does a fish in

water) he would have to produce far more energy to overcome the air

resistance than is needed while moving at the same speed under normal

conditions in the closed gondola of a properly constructed airship.

We also need the resistance area per hp (per 75 kg-m).

From (7), (i0), and (15) we have
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F

P P _i125 kF)-- : • : f • x - 7
u "" 16 ku fMn I a g
f

(31)

Then we can also say that the resistance area as a ratio to the

motor power is inversely proportional to the motor energy E or to
n

the number of kg-m per sec they produce per kg of their weight.

We put k /k = I, 7 - 7 = 0.001 t/m 5, x = I00 m, u = 50,

F u a g i f

k = 0.I, and E = 25.
m n

Then an airship equal in length to an ocean-going steamship

2 2.
gives, for ideal shape, (F /u ): p = 0.005625 m , or about 56.2 cm ,

P f

which is the area of a square of side [less than 8 cm, or less than

the area of the palm of the hand]. The horsepower equivalent to

this small area may give it the high speed calculated above, of

course.

The specific area comes out i0 times smaller for the largest

2*
metal airships, being 5.6 cm , which is the area of a square of side
less than 2.4 cm*.

For the unfavorable circumstances of an airship of displacement

3
6000 m we put

k F = 1.4; k = 0.7; u = 14; k = 0.i;u f M

E = 25; x = 50; % - % = 0,001 [t/m3].
n I a g

*Slips of the author's have been corrected; these overestimated

the air resistance by a factor i0.

I
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2

Then the formula gives 0.08 m for the specific resistance area,

2

while for the largest metal dirigibles it is 0.004 m , which is

equivalent to a square of side 0.063 m, or 6.3 cm.

It would seem that the specific resistance area per horsepower

for an average airship under ordinary conditions is slightly more*

than the resistance of a clothed man.

Now consider the resistance of the surface of the gasholder

per passenger or per unit work of the engines. The friction on the

shell in a properly designed airship, will be about half the total
resistance of the shell (or about i/4 of the total resistance of

the vessel).

The specific surface area thus expresses the resistance of

the airship. The surface area of the shell is

- x k • , (32)
3 lla 5 x

i

in which k is a correction coefficient close to one. Dividing this

a

area by the number of passengers as given by (13) and (i0), we have

I

2

_. __aa. _ -+ - -_-_ .
2 k k 5x

U M I

I

• (33)

-  g)y
a 1

*Much less.
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This shows that the relative area is inversely proportional to

the size (y) and to the density of the medium.

1

We put: k /k = l, k i/8, y /x 1/7, 7 T O.001 t/m 3

a u m 1 1 a g

and y = 7 m to get the specific surface area as 216 m 2 (the area of

1

a square of side 14.7 m, or about 7 sajene).

This surface experiences friction on one side only. If we pic-

ture this area as that of a plane moving along its length and subject

to friction on both sides, we get roughly the total resistance of the

shell (because this is twice the friction alone); but we should not

forget that such a surface taken alone has more resistance than it

does when it forms part of the whole shell.

This surface area is 20 times smaller for the largest airships

2

and so is about 10.8 m , the area of a square of side 3.3 m, which

is not very great.

Alternatively, we can represent this area as that of a cube,

whose side is given by (33) as of length about

J 5 -75
# • (34)

12k(7 - 7g)Y
U a I

This gives us 6 m for an ordinary airship and 1.34 m for the

largest. The area is thus comparable with that of a high room in the

first case, while in the second it is not sufficient for the surface

of a closed carriage. This shows that the specific surface of the

shell is small, as well as the resistance being low.

We divide the surface area of (32) by the power of the en-

gines as given by (I0) and (15) to get

5 ka (i + 2-- " -- -_,-_-_ : [k E Y (7 - 7 )]"
2 k 5x I Mnl a g

U

(35)
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Taking E = 20, and otherwise the sameconditions, we have for
n 3

an airship of displacement 6000 m that per km-m of work* there is

2 2
L/7 m of surface area, or 10.8 m per steam horsepower (75 kg-m).

The friction on such an area is very slight, so it is clear why an

airship can move with a high independent speed. The area falls to

2
0.33 m per steam horsepower for the largest size of airship.

The volume of light gas per passenger is found from the above

as

75
(36)

This shows that the specific volume is not dependent on the

size of the airship, being governed solely by the weight (75 kg) of

a passenger, by the density difference T - 7 _ and by the passenger

a g

coefficient k (= k ).

p m m3We put k = L/8 and 7 - 7 = O.OO1 t/ to find the specific

m a g

volume as 600 m 3 (volume of a cube of side 8.43 m). The giant airship

has no advantage over midget dirigibles in this respect.

*Power.
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XV. HEATING OF LIGHT GAS AND ADJUSTMENT OF LIFT*

I. This question of heating the light gas is very complicated;

no exact theoretical solution is really possible in the present state
of the art.

The combustion products from the motors are sent through a

black pipe located within the shell and surrounded by the light gas

(the heating pipe is now supposed to lie at the bottom, but this

hardly alters the results).

The gaseous combustion products may be very hot (up to 500°C)

if they are not mixed with air. This heat they give up to the black

pipe, but its temperature is far from being the same at all points.

At the inlet it reaches nearly the temperature of the combustion

products (500°C), but the temperature steadily falls towards the outlet.

It is very difficult to account for the heat transferred to the gas by

the various parts of the pipe.

The pipe must be made of a suitable material_ of course (e.g.,

copper), and the wall thickness should be appropriate to the tempera-

ture. The pipe is best made to be of maximal radiative power; the

state of the surface has a marked effect on this. For instance, it

is good for the surface to be matt and black. Part of the heat from

the combustion products is transferred to the light gas, and this

part is the larger the higher the initial temperature of the combus-

tion products; but the light gas will not have the same temperature

in all parts of the shell.

The shell's temperature will also vary from part to part and

will not be equal to the mean gas temperature. The composition of the

gas is importantj as are any contaminants such as dust, smoke, water

vapor, or water mist. Of course, these contaminants may not be

present, and this might even be better; but I believe that the mist

and smoke in the Mongolfier balloons tended to retard the loss of

heat from them and so tended to extend their time of flight_ although

they damaged the spheres.

Radiative cooling of the Earth is retarded by the clouds, so
smoke and mist within the shell should tend to retain the heat in the

airship.

The heat of the shell is transferred to the air; here the

surface state of the shell is important, as is the opposing airstream

*Power.
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when the airship is in motion.

The wind affects the cooling when the airship is at rest; the

air temperature, sunshine, cloud cover, atmospheric transparency,

height of the locality, and so on, all affect the heat loss.

The conditions are clearly complicated, but I shall make an

attempt to derive an approximate solution for the heating of the air-

ship by the combustion products•

The power of the engines is given by the usual formula; the

equivalent quantity of heat is

aU" kE : M,
m n e

in which the factor M is the mechanical equivalent of heat, a is the
e

density difference (between air and gas), U is the volume of the gas,

k is the part of the upthrust assigned to the motors, and E is the
m n

energy produced per unit mass per second•

Let u be the fraction of the heat from the fuel that is con-
m

verted into mechanical work by the motors; the total heat from the

fuel is

aUkE
m n

The amount of heat entering the black pipe is

E
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Not all of this heat is taken up by the light gas; only a part
ut is, because the gases escape from the pipe into the atmosphere at

a temperature above that of the surrounding air.
The heat reaching the contents of the airship is thus

ut_ l)aUkE
m n Me

2. The amount of heat escaping with the gas into the atmosphere

is dependent on the surface area S of the black pipe_ on the tempera-

ture tI of the combustion products_ on the flow speed and amount of

thesej on the state of the st_face of the pipe, and on the surrounding

gas.

The heat lost by a hot body (temperature tI) in unit time to a

surrounding medium at temperature t can be deduced from various formu-
2

las and studies. A very small temperature difference (!0-20 °) allows

us to use Newton's formula (rate of loss of heat proportional to tem-

perature difference).

This law can be applied to the cooling of the shell in the

air_ because the shell will only be slightly heated relative to the
air.

In all cases it is assumed that the heat loss is roughly pro-

portional to the surface area S_ although the shape of the body also

has an effect_ strictly speaking.

Newton's law then gives us for the loss of heat per unit time

(tI - t2),

in which K is dependent on the state of the surface and on the proper-

ties of the surrounding medium. This K itself has two parts: one

arising from radiation (this is more dependent on the state of the

II
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surface) and the other from loss by conduction and convection (this

is more dependent on the properties and motion of the surrounding

medium).

The first (according to P_clet) is K 1 = 0.000000588 for a

tinned surface; it is very small for polished metal surfaces general-

ly, but is 15 times larger for rusty iron_ for example (0.0000089;

second, din2).

Walerius gives the other as E2 = 0.000009, not more (for a body

placed with an atmosphere outside it). This shows that the first is

lO times less than the second for polished surfaces, but the two be-

come comparable for black surfaces.

K is thus not more than O.O0001 for unpolished surfaces.

The cooling rate of the shell is thus

O.OOIS (t I - t2) ,

in large calories per sec if S is in m2.

3. This formula is in no Case applicable to the black pipe,

because K increases rapidly with temperature.

Dulong and Petit's law can be applied for temperature differ-

ences up to 300°; this expresses the heat lost by unit surface as

tl bt2) 1.233
a (b - + c (t I - t2)

The first term relates to radiative loss, with b = 1.0077 al-

ways but a dependent on the state of the surface. The second term

relates to heat lost by contact with the medium and has no factor

affected by the state of the surface.

4. The first term can be neglected for highly polished metal
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surfaces and not very large temperature differences; the heat loss is

then that of a body in the open air:

1.233

o.ool(tI - t)

This formula is more accurate than Newton's; some (Lorentz_

Tereschin) have even used

1.25

0.001 (tI - t2) ,

which is not very different.

5. These simplified formulas cannot be applied to black sur-

faces, or at high temperatures (above 300°C), especially when the two

occur together, because the radiative loss becomes large and even ex-

ceeds the loss from other causes.

The ratio of the radiative loss to the other losses is given

by (3)as

tI
a (b - bt2)

c (t I - t2)1"233

Here a = 0.1445, b = 1.0077, c = 0.0009. For a black surface

(e.g., scaled iron) with t I = 300°C and t2 = O°C we have the ratio

(using the P_clet and Walerius coefficients) as 1.4_ so the radiative

I
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loss is rather more than the other losses.

Here we may replace the previous formula by the following one

for convenience in comparing the two forms of loss:

(btl - i).
161

t1.233
1

Temperature t has been taken as zero; then t = i gives the
2 i

ratio as 1.24 (losses nearly equal).

Other values are as follows: lO0°C 0.635, IO°C 0.76, 50°C 0.61,
and 600°C 6.1.

This shows that the radiative loss from a black surface is the

dominant loss for small temperature differences; it then becomes rela-

tively smaller but later rises: to 1.4 at 300°C, and subsequently

indefinitely. Draper found that Dulong and Petit's formula is quite

incorrect at high temperatures (above 800°C)j and it is good only for

temperatures up to 300°C.

6. I propose a formula that is not only simple but that ap-

pears also to be most probable.

This is Stefan's law for radiative heat loss:

a (T I

in which T is absolute temperature.

This formula was supplemented by Lorentz [see (4) and (5)]:

1.25
a (T_ - T24)+ c (T I - T2) ,
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in which the second term represents loss by conduction and convection.
Stefan's formula gives a very likely temperature for the surface of

the Sun and for the mean temperature of the Earth.

Boltzmann has given a theoretical derivation of Stefan's law.

2
Stefan and Christiansen found that a = 12 x lO-12 (sec, m ,

kcal).

7. The ratio of radiative loss to other losses is

1.25

8. a/c = 1.22 x I0 ; the ratio is 0.532 for TI = 273 + 100 °

and T2 = 273 °, which is almost as from (5) (Dulong and Petit's formu-

la). The result for a temperature difference of 300 ° is 1.00, which

is also close to the result from Dulong and Petit's formula. For

TI = 873 ° and T2 = 273 ° (600° difference) the ratio is 2.35_ which is

much less than the 6.1 given by their formula.

9- The above ratio may be put as follows for temperature dif-

ferences exceeding 500°:

a
m .

c (T1 _  2)1.25

Comparison of Dulong and Petit's formula with Stefan and Loremtz's
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formula shows that the latter formula indicates less loss than the

first for high temperatures; this agrees with Draper's measurements.

The Stefan-Lorentz formula is therefore preferable for high tempera-
tures.

I0. The heat lost per second in kcal may be taken as 0.002S

(t I t }.25 or _S(t I t )1"25- - if the pipe has a temperature between
2 2

0 and 400 to 450°C, in which K is the heat-transfer factor, S is sur-
h

face area in m2, and t I is in °C (first formula). In fact, I have

taken the two forms of loss as being equal at some temperatures,

which is true for 0 and 300°C.

0°/0_50° /00°

i/
I

I
I

I

/ /
/

,1,,,"

/

/
" Z

#0# ° d(O° 800°

Fig. i

Radiation by a black surface: I) true (Lorentz);

2) assumed here and in accordance with loss by

conduction and convection.
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=

The radiative loss is the smaller between these two tempera-

tures, so the simplified formula gives a larger number of heat units;

but above 300°C this formula gives a value lower than the true one,

so the errors in part balance out.

Fig. 1 shows that the areas under the curves are nearly equal

if the maximum temperature of the combustion products is 400°C.

ii. Then for the polished surface of the shell_ neglecting

1.25

radiation, we have 0.001S(t I - t2) , with twice this for the black

pipe. This gives the heat lost (kcal) in time T (sec) from a surface

s (2).

12. Fig. 2 indicates the symbols used in the deduction of the

fall in temperature along the black pipe.

The differential for the loss in a length dL for a pipe of

radius r is

wr 2 • dLcTdt = 2wr
dLK h (t - t3)

1.25
aT,

7

=

in which c is the mean thermal capacity of the combustion products,

whose density is d; t is the temperature at a point on the pipe, t3

is the temperature of the light gas, and T is the time from the start

of the motion of the combustion products in the pipe [see (ll)]. The

variables are separated and the equation is integrated to give

2cdr

Kh_t - t3

+ const = T.

We have t = t I for T = O, so this gives us the constant; then
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T _ 2_ . o7_( !
Kh 4/t t3 4/t I - t3

2r_

l g (co; /12_1

Fig. 2

13. With T = T we have t = t2_ in which • is the time ati i

which the gases escape from the end of the pipe and t2 is the tempera-
ture at which they leave.

Now

__._( _ _ ),
T1=Kh _t2_t3_/tl - t3

so

2c7r
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This gives us t2 (temperature of escaping combustion products)

if we knowthe initial temperature tl, the temperature t3 of the light

gas, and the transit time T1 of the products.

This time is now considered.

14". Wehave seen in (1) that the amountof heat brought into
the black pipe per second is

(aU) kE (i
mn u_ -I) :Me'

or, from (13) of Chapter XIV_

1 k 2
15M e (_m - i) ukmaEnYlXl = q.

15. On the other hand, this quantity q is equal to the volume

U of the products leaving the motors per unit time multiplied by the
P

specific heat c of these_ and also by the density 7 and temperature

difference t I - t4, in which t4 is the air temperature; then

q = UpC 7 (t I - t4).

These last two equations readily give the volume of products

per second; the time of transit through the pipe is
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wr2L
T1 = --,

Up

namely the volume of the pipe divided by the volume of the products.
Weput L = 2xI to get from these equations that

TI = 15 . MeC7 (tl - t4) r 2

1 _ l) '
8 kukma (_m n

16. We eliminate T from (3) to get
I

t2 = {1 : [ 15Mer (tl - t4) _

116kukmaEn (_

+

17. The temperature t3 of the light gas is essentially un-

known, but it can be deduced. Our formula is applicable to the case

in which t3 differs little from t4 (temperature of outside air), and

we can put that t3 = t4.

It is also applicable when the black pipe is in the open air.

The basis for the equation for t3 is that the heat loss from the black

pipe in the steady state is equal to the heat loss from the surface

of the shell. The latter can be found if we know the surface tempera-

ture, but this is far from being t3, being much less. For example,
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my experiments of about 1890 (on the cooling of a polished vessel in
a room_with heat supplied at the center, as in an airship) gave a

coefficient of 1/3000 for I m2 in a second.
On the other hand, the formulas given here imply (a denominator)

about half this (1/1500 for closed buildig_s, or 0.001 for an open
space).

This implies that the temperature difference between shell
and air even in my experiments with the small model (20-30 cm; I can-
not rememberexactly) was half the meantemperature difference be-
tween the internal gas and the air.

Of course, the parts of the gas near the hot tube in a large
airship will be at a muchhigher temperature than parts near the cold
shell, and the temperature of these latter will be much less than the
meantemperature t 3 of the gas.

I therefore take the heat-loss coefficient for the shell as
Eh/n, in Which n.is a fairly large numbera%ailable only from experi$

ment. For example_my calculations on the old-fashioned Montgolf_er
balloons showthat even here the heat loss from the dark surface was
only half that in my experiments with a polished surface. Therefore
n >8_ at least.

18. The heat lost by the polished surface of the shell is
then

Kh 1.25
(2Alka) (-2-n-n)(t3 - t4)

in which Kh is the normal heat-loss coefficient for a polished surface,

as in (I0); t3 is the mean temperature @f the light gas_ and 2Alk a is

the surface area of the shell.

19. Now I turn to the heat lost by the black pipe. The

amount of heat given by the pipe is koown, from (i) and (4), in which

u t is the proportion transferred to the interior of the balloon,
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which is

t I - t 2
ut "-

t I - t4'

in which the numerato_ is the change in temperature of the combustion

products escaping from the pipe and the denominator is the excess

temperature (above the air temperature) of the gases entering the

black pipe.

20. This means that the equation we need is

L.25

2Alka hn (t3 - t4)

En .I tl " t2

= aU _e (_ - I) _ tl t4_ km-

We eliminate 2A _ aU_ and t2 to find thatI

1.25 l
(t3 - t4) = B {t I - t3 },

l 4(A+ )
._t i -,.t3

in which

B

k k E
I 0.4n I

2__ __I) tl - t4 (_- - i) ..u __m . _nM
a e

i+ 5 _ I

• a. y I
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and

A

15 ' KhMer (t I - t 4)

16 • kukmaEn (_ - l) y_

21. It is now simple to deduce t3 if the sizes of shell and

black pipe are known; and with t we can deduce t from section 16
3 2

(this is the temperature of the products leaving the black pipe).

22. We calculate A and B for n = i0 (because the present air-

ships are larger than the Montgolfier balloons); t4 = 0, tI = 400,

ut = 0.I, kJk a = i, km = 0.01 (which means that the motors account

for only a hundredth part of the upthrust aU), a = 0.001 kg/dm 3,

Kh = 0.001 (per m2 per sec, half that for the black pipe), E = 25n

2 2

= _/ =kg-_kg, Yl 15 m, (I + 2y 5Xl) i, Me = 424, ku = i, r = 25 cm,

and Kh = 0.002 (for a black surface, as in section i0).

Then A = o.157 and B = 0.7960.

23. From (21) we have

t3=

i

+ t4_t 3 - t4

J

B + t3 - t4
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24. To determine t3 roughly I assumethat the heat lost by

the shell is proportional to t 3 - t4; then from (16)-(21), discarding

the power 1.25, we have

t

3

Bp i1- + t 4I I

A+

_/t 1 - t 3

I+B

The quantity under the root sign is only very slightly depend-

ent on t3, so we can put t3 = t4, provided, of course, that t I is

large relative to t3.

For example, if we assume that t 4 (air temperature) is zero,

we have t3 = 160°C; inserti_ this in the exact formula of (23), we

get t3 = 62°C. Proceeding in the same way with 62°C, we get t3 =

= 78.27°C. The fourth approximation gives t3 = 75.86°C, so the mean

temperature of the light gas is about 76°C.

25. We halve the radius of the pipe to give r = 12.5 cm

(2r = 25 cm), so A = 0.0785 and B = 0.796, from (22). A rough esti-

mate of t3 may be made by asing the exact formula with t3 = 76°C in

the second part, because the surface area of the pipe does not have a

very great effect on the gas temperature if this area is not changed

too greatly. This gives t3 = 62°C.

The third approximation is t3 = 64.5°C, so we can take 63-64°C
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as being quite adequate for practical purposes.

26. We have used t4 = 0 ° in the above calculations_ in which

case (23) is replaced by

t3=

B[ I 1tl - I _4

<A+ _ tl- t3

27. Formula (16) provided us with t the temperature of the
2'

gases leaving the pipe. Using (20), we put (16) as

= 1 4
t2 _I : <A+ ) )+ t3.

_t I - t3

==

The conditions of (24) give us roughly that t
2

I15°C, while for the pipe 2 times narrower we have t

170OC. 2

28. We have from (23) with t 4 = 0 that

=39+ t =
3

= 106 + t =
3
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_i" t3

which shows that t3 increases with A (i.e., as n, Kh, and r increase)

and with B (as _ decreases), as in (20).

The relation of t3 to the other independent variables is not

explicit. A will be large if k E is small and t is large, so the
mn i

factor within the braces can be neglected.

Then we have in place of the above that

t3=

B (t I + t4)

I+B

which shows that t3 increases in proportion to t I and also with B

(i.e., as k E and Yl increase); the increase in t with Yl (heightmn 3

of shell) is particularly worthy of attention.

29*. The temperature regulator provides adjustment of the

temperature of the light gas between t3 and t4; t3 can be much higher

than the values calculated above, because we assigned only 1% of the

over-all upthrust to the motors. The gas temperature can readily reach

100°C or more [see (28)] if this proportion is increased; as regards

the temperature of the combustion products, the pipe can be made

narrower as this temperature rises_ and so the limits of temperature

variation for a given motor power are made wider.
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The principal reason for heating the gas is to alter the up-

thrust of the airship.

The relative change in this is the ratio of the volumes of a

fixed mass of gas at temperatures t3 and t4, namely

273 + t4 T 4

273 + t3 T3

For instance, if t4 = 27°C and t3 = 127°C, we have T4:T 3 =

= 0.75, which means that the lift of the cooled airship is only 3/4

of that of the airship with the gas heated (reduction by a quarter

of the initial value).

These calculations seem to me to show that a difference

t3 - t4 of IO0°C across the shell could be readily maintained. This

has the very important practical consequence that the airship can set

down a load equal to _4 of the total upthrust UTa while retaining

its equilibrium and even descending if necessary.

One quarter of the total upthrust UFa is about 3 times the

total weight of all the passengers.

More precisely_ it is larger by a factor i/4kp(l - 7_7a),
because

Uakp = U_(7a - 7g)_kp.

Putting

Tg I
k =0.i--= --

P 7a 12
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we have 2 + 8/ll. The airship can descend to the ground_ discharge

all the passengers plus a cargo twice their weight, and go on its way

empty. Then it arrives in some city, takes on a full complement of

passengers and a vast cargo_ and then continues on its way without

need to top up with gas.

30. Another reason for adjusting the upthrust is to provide

means of rapid or slow ascent or descent without loss of gas or

ballast, and also to avoid meteorological disturbances that could up-

set the vertical equilibrium.

For instance_ the heating of a black shell by the Sun's rays

could (under favorable conditions) increase the upthrust by _I0 of

the initial value. This mighty effect of the sun can be avoided only

by altering the upthrust via an opposing change in the temperature of

the light gas, namely reduction by means of the regulator.

I neglect here the methods of releasing gas or ballast, for

these cannot long serve the purpose.

31. The change in upthrust is governed by the temperature

change of the light gas. For a fixed air temperature,

dT

dq = qi -'-g"
Tg

For instance_ consider a gas temperature T = 300 ° and dT = i°;
g g

then the change dQ will be 1/300 of the initial upthrust Qi" This

means a change of 1 ton in response to l°C change if the upthrust is

300 tons, so each degree rise enables the vessel to take on lO-15

more passengers, and conversely.

32. Further advantages are that the heated gas is drier and

less dense (less mass for the same volume), and so is cheaper.

33. Of course, the upthrust will be larger_ since the gas is

also more readily heated.
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34. The heating of the gas and shell warm up the whole air-

ship_ which tends to keep dry and not to rust; for the same reason_

snow falling on it will melt and trickle away_ and so will not reduce

the upthrust appreciably_ even in cold polar countries.

35. Also_ the slow motion of snow in conjunction with the fast

forward motion of the airship will mean that the relative motion of

the snow is nearly horizontal_ so in the limit the amount of snow

striking the shell will be reduced (relative to that with the ship

at rest) in the ratio of the transverse cross-sectional area to the

lengthwise one (namely_ by about a factor seven for a given elonga-

tion of the shell).

Alteration of the upthrust can also provide forward motion

with the airship in an inclined position.

36. Now I consider the time needed to cool or heat the air-

ship sufficiently; if this is too largej the method (of heating the

gas to adjust the upthrust) cannot be considered satisfactory.

Section i gives the heat received by the gas from the black

pipe when the inflow and outflow of heat have come to equilibrium:

t

The airship loses this amo,aut of heat through its shell in the

same time.

To heat the entire mass of gas through I°C requires

UTgCp_

in which 7g is the density and Cp
is the specific heat at constant

Il
b
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pressure. We can take W c as roughly constant for any gas that may
gP

fill the shell, so we may say that the result will be the same whether

it is filled with air or pure hydrogen.

In one second the gas is heated or cooled by

ak E

mn _. 1 ._MTC " Ut u - i
egp m

We assume that the loss or gain of heat is proportional to time

during this unit time.

We know ut (proportion of heat taken from black pipe) is known

from (19) as

tI - t2

ut = tl - t4"

37- Here we put a = 0.001, k = 0.01, E = 25 kg-_sec_ M =
m n e

= 424 kg-m/kcal_ 7a 0.0012, c = 0.24, um 0.i, t I 400°C, t4 0,

and t2 = 170°C (black pipe 25 cm in diameter; see sections 25 and 27);

then
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£

{

The change in a second is thus 0.01057°C, or in a minute

0.6342QC. Heat loss from the shell has the same effect.

38. The rise in unit time will be greater than that calculated

if the airship is still cold, because the loss of heat from the shell

will be negligible, since its temperature is close to that of the

air. We may therefore take t3 (gas temperature) as 64°C, since the

heating to about tJ2 will be roughly proportional to time, and the

rise in T minutes will thus be 0.6T°C.

This formula may also be used to express the cooling of the

shell. More exact calculations could be performed, but the work in-

volves numerous formulas, and it is sufficient here merely to have a

general conception of the rates of heating and cooling.

39- The above sections indicate how long is needed to heat

the light gas through 27°C; 0.6T = 27, so • = 45 min.

This means that not less than 45 min would be needed for the

heated airship to cool by 27°C after the hot gas has ceased to pass

through the black pipe. This cooling will be accompanied by loss of

0.I of the initial upthrust, in accordance with (31).

It needs 3/4 hr to cool the shell after the temperature regu-

lator has shut off in order to set down all the passengers and cargo;

also, to take on a full complement of passengers after this needs not

less than 45 min in order to heat the light gas via the black pipe.

40. But these times are not to be reckoned as unalterable;

they can be greatly reduced, for (36) shows that the heat loss or

heating per unit time is governed by kmEn, i.e., by the power of the
airship's engines.

If, for example, the motors are assigned (for the same energy)

not 1% of the total upthrust but 10% (km = 0.I), we have a heating

coefficient i0 times larger, which means that the rise in temperature

in a minute can be 6°C. The takeoff thus requires not 45 min but

4-_2 min, which is almost instantaneous. Heating of quite adequate

rate would be provided by increasing the power of the motors by only

a factor three, for then the heating time for 27°C change would be

only 1/4 hr.
The heating coefficient of (36) is not dependent on the size

of the airship; no matter how large the airship may be, the heating

(heating rate) is not thereby reduced.

I



377

2. EI_MENTARY DESIGN OF A METAL DIRIGIBLE *

I. Description of the drawings

The drawings are schematic, i.e., the scale may vary even in

the same drawing.

Fig. i. This figure depicts the metal envelope of the

dirigible in the flattened state. It has not yet been filled with

gas and is suspended by chains in a special dock. It has the shape

of a flat-bottomed boat stood on edge, with the deck covered over.

The sides of the dirigible, consisting of corrugated iron sheet_ are

fitted with vertical, flexible, but comparatively massive bands,

which also serve as a means of connecting the lateral corrugated-

metal trapezoids. The top and bottom of the envelope consist of

long, narrow curved surfaces reinforced by massive cross members and

flexible longitudinal beams. The ends of the envelope, i.e., the

stern and the bow, are square.

Fig. I.

*1914.



From a distance it is only possible to distinguish the two

corrugated side walls of a large natural-size dirigible; the other

parts are comparatively so small that they can scarcely be seen;

in general appearance the dirigible resembles a willow leaf.

The curved lines running fore and aft indicate the half-cylin-

ders that cover the articulated Joints.

Fig. 2. The same envelope_ but in the inflated state. In

its natural form it is the same shape as a giant spindle. The

blunting of the ends is discernible only at close range.

r

Fig. 2.

Fig. 3.

envelope.

Fig. 4.

Transverse vertical section through the unlnflated

Same, through inflated envelope.

IIi
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Fig. h. Fig. 5.

Fig. 5. Same, but with air inside envelope evacuated. It is

in this form that the envelope is filled with gas.

In all of these drawings (Figures 3, 4, 5), the black dots in-

dicate an articulated joint between the sides and the top and bottom

of the envelope; the incomplete circles, on the other hand, re-

present sections through the tubes that cover these joints and thus

prevent the gas from leaking out.

Fig. 6. Fig. 7.

In the case of real envelopes, these tubes will not be
visible at a distance.

Figures 3 and 5 then assume the form of two vertical panels

with an almost imperceptible gap between them, while Figure 4

appears like a smooth circle.

Fig. 9 shows the articulated joint between the corrugated
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side panels and the top or bottom.
Figures 6, 7, and 8 show the principal elements of the metal

envelope of the dirigible.

Fig. 8.

The leaves of the hinge (Figures 6 and 7) are made by factory

methods, in unlimited lengths and in standard form. Their thickness

depends on the size of the envelope.

Fig. 9.
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The part shown in Fig. 6 is in contact with the narrow strip

at top or bottom, and the part shown in Fig. 7 is in contact with the

corrugated side wall; for this reason it has a corrugated cross

section into which the corrugated side wall (Fig. 8) or a part of it

-- a trapezoidal panel -- fits.

Fig. I0. Fig. II.

Fig. i0. Cross section through an articulated Joint covered

by a gastight flexible tube.

Fig. 12. Fig. 13.

Fig. ii. Transverse vertical section through an elementary
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type of dirigible. The gondola is attached at the bottom.

The envelope is held under tension by a block and tackle

system to stabilize the longitudinal axis in a horizontal position.

Fig. 12. Safety valve in the bottom of the envelope -- in

the gondola. Gas from the envelope fills the broad tube on the

left.

If the pressure exceeds the norm, then the gas will lift the

slide valve, like a stove damper, and the valve flange will rise out

of the liquid filling the annular channel so that the gas can escape

freely, thus reducing the excess pressure inside the envelope. The

action of the valve is facilitated by rollers.

Fig. 13. This drawing is a graphic illustration of how the

gas temperature inside the envelope is changed. It shows the tem-

perature regulator.

Fig. 14.

The combustion products from the dirigible's engines are

directed into a pipe, whence one fraction is conveyed through the

interior of the envelope in a black metal tuloe, heating the light-

weight gas inside the envelope, and the envelope itself, in the

process_ and is then vented to the outside. The remaining fraction

is directed into an exhaust pipe and vented directly into the at-

mosphere.

The manually operated slide valve controls the amount of gas

flowing in either direction by covering and uncovering the openings
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leading to the black tube and the exhaust pipe, respectively.

The two openings are usually partially covered, so that a

certain average temperature, say 30°C, is constantly maintained

inside the envelope; by moving the valve one way or the other,

this temperature can be reduced to zero (the temperature of the

air) or raised to 60°C.

Fig. 14". The metal dirigible and its principal components.

Only a portion of the corrugated metal surface is shown. Most of it

has been cut away.

Inside the envelope we see the pulley tensioning system de-

signed to insure the stability of the longitudinal axis of the

dirigible.

Beneath this, in the bottom of the envelope, we note the two

black tubes leading from the gondola engine, through the temperature

regulator (Fig. 13), and forming a duct for the hot combustion

products.

The tubes begin at either end of the gondola, where the

engines are located; the propellers are also found here. The out-

lets of the black tubes are at either extremity of the envelope.

The two tubes make it possible to control the buoyancy of the two

halves of the envelope independently. This is a highly efficient

means of restoring the horizontality of the longitudinal axis of the

dirigible. The temperature difference between the front and rear

sections of the envelope is also due to the presence of a light, but

strong and flexible transverse diaphragm (with a rhombic mesh) in-

dicated by the broken line. It need not necessarily be rubberized

and may allow the gas to pass, but only very slowly. This is the

only inflammable part of the dirigible; it can not burn in hydrogen,

of course; in any case it is not an absolute necessity.

On the left-hand side of the gondola we find the control

surfaces: a horizontal control surfkce (a distorted rhomb) and a

vertical one. The total area of the control surfaces must be large

enough to include the stabilizers,

A non-reacting passive stabilizer, such as a rudder or a

bird's tail, for changing the direction of the dirigible would be

a burden; it would be lO times less efficient in restoring the

trim or proper direction of the dirigible than rapid-acting auto-

matic control surfaces of the same area.

This is why I am against fixed stabilizers*.

What are the advantages of this design?

Block-and-tackle tensioning at various points along the gondola

will compress the gas and insure a stable longitudinal axis. Tension-

ing at one end combined with relaxation at the other will tilt the

longitudinal axis, or make it possible to restore a tilted axis to

the horizontal. The same effect can be achieved much more easily by
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means of the two temperature regulators (Fig. 13).

fS#O

65#

Fig. 15.

Pulling the middle of the diaphragm in one direction or the

other may serve the same purpose.

The temperature regulators operating simultaneously and in

combination enable the dirigible to rise, sink, and vary its buoy-

ancy without loss of gas or ballast.

The normal pressure level inside the envelope is restored by

tightening or loosening the envelope, as the gas volume and pres-

sure change in response to a rise in altitude or other factors.

If this were not done, the intensified gas pressure could be

relieved by means of the various safety valves (Fig. 12) installed

to valve off excess gas. This, of course, could only happen in the

event of negligence, which there is no reason to anticipate.

A catwalk makes it possible to inspect not only the bottom

but also the top of the envelope, even while aloft.

Fig. 15. The relative size of various dirigibles as compared

with the Eifel Tower, the Pyramid of Khufu (Cheops), the deck of an

ocean-going steamship (shown hatched), a pine tree, and Giffard' s

captive balloon.

The figures indicate the number of passengers carried.

!
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Fig. 16". All-metal models of the dirigible made exclusively

of iron. This, so to speak, is the first embodiment of the idea.

Fig. 16.

In the middle we see a flat dirigible, at the bottom a slightly

convex, and at the top the fully inflated form. The half-tubes used

to cover the articulated joints at the edges of the envelope show up

clearly.
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Fig. 17.

The envelope personally constructed by
K. E. Tsiolkovskiy during the years 1912

and 1913.

Fig. 17. The inflated dirigible in its most distinctive form.
The bottom, not visible, is exactly the sameas the top.

The length of each model is about 2 meters.

II. ADVANTAGES

I. Incombustibility. There is nothing inflammable --

neither in the envelope nor in the gondola, except for certain furnish-

ings. The gas will not explode by itself, though it will burn. If a
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multiplicity of small openings were made in the envelope and the es-

caping gas were to catch fire accidentally, we would get a series

of steady flames burning outward, since the internal pressure would

not permit air to penetrate into the envelope; this means that

there would be no mixing and hence no explosion. Of course, the

envelope itself will not catch fire, but at worst may melt, the

most serious mishap being the loss of gas. The envelope will

slowly collapse, losing some of its buoyancy in the process. On

board ordinary dirigibles, the passengers, and in particular the pilots

and crew, being more responsible, are continually anxious about the

possibility of fire breaking out. Smoking and lighting fire is

strictly prohibited. Actually, a minute is all that is required to

bring complete disaster and reduce the ship to ashes. Terror and panic

paralyze the hand and mind. The gas could ignite unexpectedly due to

a spark caused by friction or atmospheric electricity. It is very

difficult to foresee and forestall such mishaps. The slightest con-

fusion on board, some misunderstanding, and the crew may lose their

heads and contribut_ to a serious accident.

2. Impermeability of the envelope, absence of osmosis. There

is no danger of losing buoyancy. Storms, hurricanes, whirlwinds,

foul weather and no opportunity to land are not such terrible threats.

All of this can be overcome by rising higher into a quieter layer of

the atmosphere, where there is always good weather and the sun shines

imperturbably, and where at night the course is indicated by the

stars, the moon, compass, barometer, and other instruments.

The ship can stay aloft as long as desired at these altitudes,

and, of course, it is perfectly safe to descend under more favorable
weather conditions and at some place more favorable for landing.

Let the stormy weather rage on below, we can spend our time leisurely

in the kingdom of bright light and pure air. There will be no harm

even in stopping the engines.

3. Nonhygroscopicity of metal. Thanks to this property, the

dirigible will not become heavy and weighted down by absorbing mois-
ture from the air or rain.

4. Life of dirigible. Aluminum, nickel, and many other

metals will last a century without being replaced; the same holds for

an iron envelope periodically coated with varnish or paint. A lead-

plated envelope is also tough. The envelope may be made twice as

thick as sheet iron in large dirigibles, or 6 times as thick (3 mm

thick) when aluminum is used. The properly constructed metal en-

velopes of large dirigibles would be virtually indestructible.
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5. Cheapness of iron. Fabric rubberized on one side is not

only 50 times more expensive but, what is more important, ruptures

easily under the action of sun, weather, and fire. Because of the

short life of this n_terial, it turns out to be at least lO00 times

more expensive than iron. And how attractive is the prospect of

cutting the costs of a dirigible by lO00 times:

6. The strength of the material makes it possible to build

dirigibles 300 meters high, each capable of carrying as many as 200,000

passengers. Such dirigibles could travel faster than railroad trains.

Travel on board these vessels would be cheaper than transportation on

board a steamship, since (cf. my "Simple study of an airship") every-

day all-weather travel by airship would be accessible to one and all.

7. The bright surface of the metal envelope will absorb little
heat from the sun and will not be cooled so readily by radiation at

night, or in the daytime when heavy clouds cast their shadow over

the dirigible.

A consequent change in the temperature of the light gas in-

side would necessitate both valving off gas and releasing ballast.

This loss will in general be greater than that due to osmosis of

the gas. It will be minimized, of course, if a metal envelope is

used.

8. Heatin_ of the light gas. Actually, a metal dirigible

should never have to lose gas and ballast at all thanks to the arti-

ficial increase and change in the temperature of the gas inside the

envelope. It would be dangerous to heat the gas unless the envelope

were noncombustible. The combustion products from the engines are

led through a special black metal tube located inside the envelope.

The cooled products are expelled from this pipe into the atmosphere.

Accordingly, the light gas is always heated above the temperature of

the surrounding air. If a fraction of the combustion products is

vented directly to the outside air, then the temperature inside the

envelope will be lower. In other words, the temperature of the light

gas can be v_ried within certain limits, which brings a host of ad-

vantages following from the use of a metal envelope, viz. :

a) high temperatures to increase the buoyancy;

b) no risk of water or snow freezing and sticking to the

envelope in wintertime or in polar regions;

c) varylng the temperature also makes it possible to

regulate the buoyancy of the dirigible over an enormous range; for



389

example, all the passengers or all the cargo could be discharged,
yet the dirigible, thanks to artificial lowering of the temperature
of the gas, would not tend to shoot upwards into the clouds like a
rocket ;

d) varying the buoyancy makes it possible for the dirigible
to ascend and descend with no loss of gas or ballast;

e) for the samereason, the dirigible will find it easier
to cope with natural fluctuations in the gas temperature due to
sunlight and other factors; for instance, whenthe gas is heated
by the sun, the temperature can be artificially lowered, and the
tendency of the dirigible to float upwards counteracted.

9. No need for ballonet. In order to preserve its ex-

ternal shape with change in altitude, position, etc., the ordinary

dirigible carries inside a gas bag (ballonet), partially inflated

with air. As a result, the soft surface of the dirigible remains

smooth, and deep folds, that might interfere with control of the

dirigible in flight, do not develop. But a metal dirigible cannot

develop folds, its shape is consistently true and well adopted to

cutting through the air, and thus it has no need to carry a

ballonet inside. The ballonet might still prove useful for main-

taining longitudinal stability; but this can be achieved just as

well by tensioning the corrugated envelope.

Should this tensioning prove inadequate for the needs of

large metal dirigibles, recourse could be had to other means of main-

taining stability (Fig. ll and Fig. 14). I have written extensively

on these means, and they are now being used in the latest designs

(Crocco and Torres-Quevedo).

lO. The model I have constructed demonstrates that a com-

pletely elastic dirigible can be obtained even when the height is

no more than 2 meters. Theory shows, however, that even a dirigible

as tall as the Eifel tower (300 meters) could be built. In view of

the feasibility of snell dimensions, we can be_in by constructing a

tiny dirigible. We then risk very little, and in the process we can

learn how to build dirigibles of more generous dimensions. Thus,

we shall be in a position to take our second step with virtual

certainty of success.

ll, 12. Huge envelopes are nmde possible by the strength
and low cost of iron and steel. Their size will render metal

dirigibles the cheapest means of transportation for passengers and

cargo, as I have proved many times over in mywritings. The speed
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of the zeppelin is now 75 k_/hr; the speed of large metal dirigibles

will be twice as great, i.e., in no way inferior to the speed of

airplanes.

13. Ease of inflation. With the envelope suspended in

the dock in its flattened-out form, the air is evacuated. The en-

velope will contract, the walls will draw closer together to the

point of contact, and only at top and bottom will a small amount of

air remain. Then light gas is admitted at the top while air is

still being exhausted from the bottom, until the air is completely

replaced by hydrogen. More hydrogen is then pumped in, all the

other openings in the envelope being sealed (Figures l, 2, 3, 4, 5).

14. The volume of the envelope will vary elastically from

almost zero to some specific value. The smoothness of the shape will

not be impaired in the process. If the dirigible were filled to half

its maximum capacity at sea level, then, assuming it contains no in-

ternal ballonet, it would be capable of ascending to a height of 5 km
with no trouble. Because of the state of tension of the corrugated

envelope, the stability of the longitudinal axis will always be secure.

Its ability to move through the air will not suffer either. A metal

dirigible could thus make its way over mountainous areas, over any

plateau. There would be no barriers to its progress.

15. Gondola, propellers, rudders, and stabilizers remain to

be added to our design for a metal dirigible. The two heavy longi-

tudinal bands at top and bottom are convenient for this purpose. The

cabins could be both underneath and on the roof, and the same holds

for the propellers, so that the protection and maneuverability of

the dirigible would be greatly increased. The dead and live loads

of the lower gondola would have to be much greater than those on

top, for reasons of stability.

16. There would be no need to use expensive and dangerous

gasoline as fuel. The engines could burn the envelope gas. If

this were ordinary illuminating gas, the fuel would be I0 times

cNeaper than gasoline; but if pure hydrogen were used, it would

still not be more expensive than gasoline. As the gas inside the

envelope was used up, the interior of the envelope would have to be

heated by the method described. When the temperature of the gas

could no longer be raised any higher, the dirigible would have to

be lowered to the ground, the gas cooled, and the envelope refilled.

Then the dirigible would be ready for another thousand kilometers of

nonstop flight.
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17. Simplicity of construction. An assembly dock is needed,

i.e., a huge barn with the upper longitudinal strip suspended from

the ceiling. Then the side walls are hung from the roof strip.

These side walls are similar and consist of trapezoidal panels. Each

panel is installed separately in the same hangar, from below, on a

horizontal or inclined platform. The trapezoids are made of corru-

gated iron sheet (Fig. 8). The corrugations are uniform for each and

every trapezoid. The non-parallel sides of the trapezoids have hinges

at top and bottom (Figures 6, 7, 9, ii), matching those of the upper

and lower beams. The parallel sides of the trapezoids are designed

to form leaktight joints; these joints are closed after the wall

panels have been joined to the roof strip. The bottom of the envelope

is joined to the wall panels later on. Finally, all the hinged joints

are covered with cylindrical half-tubes (Figures 3, 4, 5, 6, I0) to

prevent leaks. The attachment of the gondola, propellers, etc.,

presents no problems. I may add that everything will definitely be

made of metal (Fig. 14). Note that all the parts are first joined

geometrically, and only later are the joints sealed.

18. Risk to life and limb. The zeppelin-type dirigible may

be considered a very safe means of transportation, except for its

inflammability. It would be even safer than my proposed vessel_ if

it were made entirely of metal, but this would be impossible without

a radical change in design.

Actually, if all the light gas were to be let out of a zeppelin,

it would still retain its external shape, the hydrogen being replaced

by air. This shape, having a considerable surface area, would pre-

vent it from falling too quickly; the partially deflated dirigible

would act somewhat like a parachute.

My dirigible lacks this advantage, unless air were blown into

the ripped envelope by means of a large emergency fan.

But the inflammability of the material cancels out all the

advantages of existing dirigibles.
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3. THE DESIGN OF A METAL DIRIGIBLE TO CARRY

FORTY PASSEM3EES

In this chapter I shall give a far from perfect and quite in-

complete account of the design of a dirigible 20 meters high and LeO

meters in length, capable of carrying 40 persons, and having a volume

not exceeding 23,600 cubic meters.

It is still premature to think of actually carrying out this

project. Much preliminary work will be required, as shown in my

article "Sequence of Practical Operations in the Construction of

Dirigibles" (see Chapter V). Once these preliminary steps have been

taken, the project could be carried through to completion in line
with the results obtained.

Moreover_ a project involving a dirigible of this size could

not be very Successful in any case: the larger the dimensions (up

to a height of roughly 50-100 meters), the better the prospects of

realizing the project.

I. Design Fundamentals

2

The design of this dirigible is based on four principles that

are not applicable to other systems.

1. It is made entirely of metal (a cheap_ durable, and strong

material). There are no gas losses. It has a long life.

2. Variability of volume without detriment to the smoothness

of the shape, strength_ or durability of the envelope. Simple de-

sign.

3. Construction of the envelope on a horizontal surface in

flat form.

4. Inflation with hydrogen in the same position, without first

having to raise the envelope.

5. No construction dock or hangar.

6. No need for a mooring tower_ since the dirigible, lacking
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a rigid framework, is elastic like a ball.
do.

A small mooring mast will

7. No need for ballonets or bulkheads. These are replaced by

a cable tensioning system.

8. Heating of the interior of the envelope by means of com-

bustion products and natural cooling eliminate ballast and gas losses.

Thanks to the above advantages, the lift force can be varied

at will. Meteorological effects can be dealt with successfully.

Option of changing altitude# at no cost, in order to escape from

rainstorms, thunderstorms, pitching and rolling, and to take ad-

vantage of favorable winds.

9. Simplicity in design and ease of construction.

10. All the loads are suspended. All the forces place the

envelope_ and other parts of the dirigible_ in tension, the condi-

tion of minimum weight.

ii. The gondola, motors, cargo, etc., are all suspended and

have their support (thanks to an ingenious system of cables) in the

vast upper surface of the envelope.

12. The rigid part of the dirigible, the floor of the gondola,

serves as a firm foundation for mounting essential equipment.

13. The elastic limit of the material should not be exceeded

at any point.

14. On the whole_ the dirigible is flexible, and the less

flexible parts are relatively small.

15. The rest of the design is the same as for other dirigibles.

This applies to the motors, propellers, and control surfaces.

Most of the calculations are approximate_ but on the conserva-

tive side. For example, the forces and the weight of the equipment

are exaggerated, while the lift force is underestimated.
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II. Some Theoretical Remarks

Some previous acquaintance on the part of the reader with my

writings on the metal dirigible is assumed. Accordingly, I shall not go

into too great detail. Much will be taken for granted. My aim is a

practical one: to point out the best design and best way to build

it. I shall present the simplest and most practical formulas_ with-

out going into detailed explanations.

Shape of Longitudinal Section of

Dirisible Envelope

16. From my "Theory of the Aerostat" (I shall refer only to

formulas from that work)_ it is clear that the principal longitudinal

section through an envelope filled with hydrogen may be expressed by

the equation (259):

y=ylCl-

z

This is a very smooth curve, as may readily be seen from the

drawings. The corresponding surface of revolution is not quite so

full (blunt or convex) as an ellipsoid, but is fuller than the sur-

face formed by rotating a parabolic curve (taken at the vertex).

17. On inflation, a flat envelope of this shape will require

corrugations of constant curvature (in the middle section), which

simplifies the construction of a corrugated metal dirigible. Only

the ends of the envelope will require steeper corrugations.

In order to avoid this, the ends of the envelope are replaced
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with conical surfaces.

Nevertheless, these should still be corrugated, though the

corrugations may be shallower, because smooth (even conical) surfaces

will form irregular folds on inflation. And this would jeopardize

the stability of the envelope.

The Role of the Envelope Bases

18. These bases are necessary; for in large dirigibles it is

the bases that resist most of the gas pressure. But since they can-

not be very broad; they must be made three times as thick and of

equally strong material. Moreover, thanks to the bases the bending

of the side walls of the envelope will be the less the closer we

come to the ends, which is precisely what is called for, since the

depth of the corrugations is almost constant, and the radii of

curvature of the side panels diminish toward the ends of the en-

velope.

19. Note that even these thick bases, by enlarging the

volume of the envelope, increase the lift force by as much as the

weight of the envelope is increased as a result of adding to the
bases themselves.

The bases, therefore, must not be made narrower toward the

ends in order to save weight_ they should rather be made thinner

toward the ends and thicker toward the middle. The middle could

also be enlarged without being made thicker. This would not only

increase the strength, but improve the buoyancy of the dirigible and

is therefore more advantageous than thickening.

Slope of the Envelope Corrugations

20. A rough idea of the stretching of the corrugations may be

had from formula (294). Using the notation of Fig. l, we find
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X2
u=0.5 • m

21. Here Y_X 2 is the slope of the corrugations, (S-X2)/X 2

is the ratio of the total extension to the unstretched sheet. The

total depth of the corrugations will be 2YI, and the total length

4X_. The ratio will be 0.5 Y2/X, i.e., one half the slope of the

corrugations.

22. The curve of the corrugations may be an arc of a circle,

a truncated sinusoid;" or even a straight line. I recommend a smooth

curve, as for example an arc of a circle. Of course, the stretching

will also depend on the shape of the cross section, but only very

slightly: the error will not be large, and we may assume that our

formula is valid for all curves provided the slope _X_Y 2 is not
greater than 0.5.

23. The corrugations must not be flattened out completely.

After the envelope has been inflated and the corrugated sheet sub-

jected to a certain amount of stretching, shallow or gently sloping

corrugations must still remain. Otherwise, the rigidity of the en-

velope will be impaired, and failure may even occur. If the corruga-

tions remain, failure will be impossible (the longitudinal bases will

prevent it).

24. For this case, using the notation of Fig. I_ we find from

the formula derived above, cf. (20), that

S - S I

1
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Here S/Y is the relative residual slope of the corrugations

after the corrugated sheet has been stretched*; (S - S1)/X 2 is the

maximum, but not the total relative extension of the corrugated sheet.

When the corrugations are completely flattened_ we get the limiting

extension of the corrugated sheet.

• ___ d • p

Fig. 1

25. I shall now turn to the inflation of the dirigible en-

velope_ i.e._ the transition from the plane condition to a surface of
revolution.

Using the notation of Fig. 2 for the dimensions of the dirigible_

we have (259):

A l 3_ 2 (x_) 2dx 32

*l.e., the ratio of the residual slope (or, more precisely, depth) of

the corrugations to the initial slope•
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5

where A is the increment in the arc of the horizontal meridian over
i

an interval dx as the envelope passes from the flat to the inflated

shape, and vice versa. In the latter case, the increment will be

negative.

This applies to the section described above under 17.

26. I have shown that the extension will be about the same

for different points on the center-line of the envelope (except at

the ends), i.e., for different x/x I. In order to find this extension,

we put __x/xI = 0 in the last formula. We then calculate

d-_= 1.85\_-_-i_.

l/ is the aspect ratio of the fully inflated envelope.Here x Yl

27. This extension (25) must be equal to the extension of

the corrugated sheet, see (24), i.e., from (26) and (24) we obtain

"Yl 2 Y3-2

Remember that Yl/Xl is the aspect ratio of the inflated en-

vo_o_e,_ VS _ _e_o_oo__e=_o_o_ _oe_,w_o %/_
is the residual slope of the corrugations after the dirigible has

been inflated.

ill
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_. __ _Contour of empty envelope

------ <

Contour of inflated envelope

Fig. 2

28. From (27) we have

-- = Xl J Y_2 2
X_ 0.52 ( ) i - ( )

This shape .determines the slope of the corrugations of the un-

stretched corrugated sheet as a function of the envelope aspect ratio

and the residual slope of the corrugations in the inflated envelope.

We design the emvelope in the flattened form. It is assigned

a certain aspect ratio. What will be the greatest slope of the

corrugations? Neglecting the-bases_ we have:

29. 2try I = 4Y4,

where Yl is the radius of the inflated envelope_ and Y4 is the radius
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of the flattened envelope. Eliminating Yl with the aid of this
formula, we have from formula (28):

30.
x_

= o.8i7 C@)
J4"

C 31. Suppose, for instance, that the aspect ratio of the flat

side walls of the envelope is four, and that the convexity of the

stretched material is 0.5_ i.e._

_ = 4 and _ = 0.5.

Y4 Y2

Then

X2
-- = 2.827.
Y2

In general_ we can compile a table_ such as Table i below_ for

different aspect ratios of the flat envelope, giving the slope of the

corrugations for a residual slope of 0.5 and 0.3.

The last two rows of the table give the relative value of the

total extension (straightening) of the corrugated sheet, or the de-

gree of shortening of the flat metal surface upon corrugation. This

shortening may amount to ii%, which is uneconomical. But there is no

need to make dirigibles with an aspect ratio in the flattened form of

less than 4 (or less than 6.3 when inflated). Then the shortening
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will not be greater than 6.4%. When the sheet is corrugated_ it is

possible to judge whether the slope is satisfactory from the shorten-
ing.

According to formulas (245), the extension of the envelope will

be far less near the bases and will tend to zero. But some de_ree of

corrugation must still be retained_ even at the bases themselves,

otherwise the side walls would not have the required rigidity. The

corrugations may_ however_ grow shallower as the bases are approached.

In view of the concavity of the upper portion of the envelope_ the

upper parts will stretch somewhat more than the lower parts. There-

fore_ it is even preferable to keep the depth of the corrugations at

the top of the envelope almost the same.

32. From (245) we conclude that the shortening A as a func-

tion of the distance _ from the edges of the envelope may be expressed
by the formula

A = A1 (_)

where Yl is the distance from the center to the edge of the flat en-

Velope along its transverse diameter.

This formula can be used to compile a table of approximate

values of the ratio A/A I for various relative distances to the edges

of the envelope.

TABLE 2

_/Yl

A/A1

0.I

0.19

0.2

0.36

o.3

0.51

0.4

0.64

o.5

0.75

o.6

0.84

o.7

, o.91

o.8

o.96

o.9

0.99

i

i

 lli¸
ill!
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This table will be of greater value for very large dirigibles,
whose fabrication must be more precise.

33. Elongated envelopes are more economical. Thus, we see

clearly from Table i that in the case of a flat envelope with an as-

pect ratio of 5 (or almost 8 when fully inflated), the maximum

shortening would be less than 4% (the true figure will be even less,
since the envelope stretches).

34. The elastic extension of the corrugated sheet is given

in row 6 of Table I. For example, in the case of flat envelopes

with aspect ratios of 4 and 5, the percentage extension must be 4. 7

and 3. In the case of envelopes 2 meters or more tall with an aspect

ratio of 5 when flat, this is perfectly feasible, as demonstrated not

only by the many calculations I have made but also by my experience
in building a model*.

The transverse elastic bending of the envelope during inflation

is also feasible on the same basis (cf. "Theory of the Aerostat").

The practical conclusions that may be drawn from this discus-

sion of the slope of the envelope corrugations are illustrated in
Fig. I.

IIl. Notes on Use of Table I

35-40. The tabulated data relate to one half of the en-

velope. The purpose of the table is to elucidate the forces acting

on the envelope. From these data we can also obtain some hints on

improving the design of the dirigible. The table is also necessary
for its construction.

Initially I have confined my remarks to the more important
rows of the table.

Row 8. Needed in actual construction.

ITable 3 at the end of this chapter.
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Row 12. Dimensions of inflated envelope, vertical.

Row 15. Volumes of compartments, and total volume.

Row 16. Lift force for each compartment and dirigible as a

_hole (not connting _elght of hydrogen).

Rows 17 and 18. Same, inflated to 75% capacity.

Fig. 3

Rows 34 and 35. Free lift force for compartments and dirigible

as a whole (inflated to 100% and to 75% capacity), available to lift

motors_ control surfaces, fuel, passengers and crew, and other neces-

sary loads.

Rows 36 and 37. Same, but not for a whole compartment, i.e.,
referred not to 6 meters but to I meter of length of compartment (or

gondola).
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Row 38. 0verpressure of gas inside envelope, per square meter.

Rows 66 and 67. These figures must serve as a guide in de-

termining the thickness, width, and strength of the bases at different
cross sections.

41. Fig. 3 is also intended as an aid to understanding the

table.

The upper part of Fig. 3 relates to the flat, and the lower

part to the fully inflated dirigible. The upper diagram shows the

dirigible in the vertical position (even though it may be constructed

in the horizontal position).

The solid lines running across the diagram indicate planes

normal to the longitudinal axis, which divide the envelope into

imaginary compartments of equal _idth. There are ten of these, each

6 meters wide. The relative distance of the parallel sections from

the center is not indicated in the drawing. The broken lines en-

close imaginary trapezoids, of which the solid vertical lines form

the axes. When the envelope is inflated, these trapezoids become

conical surfaces.

The length of the longitudinal semiaxis of the envelope is de-

noted as Xl, while x simply denotes the distance of the transverse

plane from the center cross section. There follows a row by row des-

cription of the tables.

42. Row 1. This gives the ratio x/x I defining the position
of the cross section.

Rows 2-4. These give the following quantities, which will be

found useful in the calculations:

1 - 1 - 1 - ( )2.

Row 5. The relative ordinates of the flattened side walls of

the envelope or
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]Z : E1-Y I

Rows 1-5 are essentially only ratios.

Row 6. Tangents of angles for flat envelope.

Row 7. True distances of cross sections from the center cross
section.

Row 8. Ordinates y of flat side wall, assuming the center

ordinate Yl to be 15 meters. This and subsequent values are computed

from the formula of row 5 only up to the tenth column (i.e., to the

section 0.9). Actually, the design of the envelope calls for conical

ends*. To obtain these, tangents to the surface of the envelope must

be drawn from the point where x/x I = 0.9 (row 6).

Row 9- Double ordinates (2y) of the flat envelope (under con-
struction)_ or lengths of cross sections.

Row I0. Same, with the addition of the width of the base,

which I assume to be 2 meters (about 10% of the height of the in-
flated envelope).

Row Ii. Ordinates of the completely inflated envelope_ or

radii of the cross sections. Divide the half-perimeter of the cross

section of the flat envelope by w.

Row 12. Diameters of cross sections through inflated envelope.

The ordinates and diameters differ from the values for a flat envelope

in row 9 because of the bases, but only slightly.

Row 13. Cross-sectional areas of fully inflated envelope.

Note that rows 8-13 do not depend on the length along the longi-

tudinal axis of the envelope. They relate to any aspect ratio (for a
flat envelope 30 m wide).

Row 14. Suppose that the side walls of the flat envelope con-

sist of trapezoids whose centerlines coincide with our cross sections.

The figures in this row indicate the heights (widths) of these trape-

II
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zoids when the length of the flat envelope is 120 meters (semiaxis

60 meters), or when the aspect ratio of the flat envelope is 4.

The first and last figures relate to half-trapezoids. The heights
are therefore also halved.

When the envelope is inflated, the trapezoids form, with the

bases of the envelope, a series of truncated cones, whose heights

will be nearly the same as those of the trapezoids. We obtain ii new

conical compartments. 0nly the end compartments will be halved.

Row 15. Here the figures indicate the volumes of the compart-

ments when the envelope is fully inflated. We saw that the ends of

the envelope must be conical. The last column is computed accord-

ingly. Note that more exact formulas yield larger volumes for the

cones and for the dirigible as a whole*. The volume of all II cones

will be 11,795 cubic meters, double this value being 23,590 cubic

meters. This is a comparatively small volume. Dirigibles are now

being built with a volume 4 to 6 times larger and more.

Row 16. The lift force for each compartment fully inflated

with hydrogen. The lift force per cubic meter is assumed to be 1.2

kg. The combined lift force for all II compartments is 14,149 kg,

and the lifting capacity of both halves of the envelope together is

28,298 kg, i.e., more than 28 tons.

Row 17. Our dirigible is, in general, not filled to full

capacity (100%) but rather to approximately 75% of capacity. This

enables the dirigible to rise to almost 2 km, which is ofter ad-

vantageous, and sometimes necessary.

The figures in this row give the volume of the compartments

assuming 75% inflation. The half-volume of the envelope is then

8_844 cubic meters, and the total volume 17,688 cubic meters*.

Row 18. But at this degree of inflation the lift force for

each compartment will be reduced. Thus the lift force developed by

all Ii compartments will be 10,612 kg_ and the lift force developed

by the entire dirigible will be 21,224 kg.

Row 19. _gice the area of the lateral trapezoids of the flat

envelope. The area of the terminal rectangle (2.46 × 2) square

meters is added to the end. The half area is 2,604 square meters,

and the total area 5,208 square meters (Fig. 3).

Row 20. The weight of each pair of lateral trapezoids. We

assume the density of the metal to be 7.8, and its thickness to be
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0.15 nnn, with 10% allowed for welding, corrugations, etc. Under

these conditions, one square centimeter of sheet metal will weigh 1.3

kg. The half-weight will be 3,398 kg, and the total weight 6,796 kg.

Row 21. The weight of the bases of each pair of trapezoids.

We assume the density to be 7.8; thickness 0.45 mm; the weight per

square meter 3.51 kg. Adding 20% for the hinged joint, longitudinal

(very shallow) corrugations, the inclination, etc., we find that one

square meter of the base weighs about 4.2 kg. Note that the inclina-

tion of the bases, even at the ends, will increase their length by

only 13%, while at this point they may be at least half as thick.

The area of the bases for each compartment, assuming a width

of 2 meters, is computed in row 14. Multiplying this by the weight

of one square meter, 4.2 kg, we obtain the figures in row 21. The

weight of the bases for half the envelope will be lO00 kg, that for

the entire envelope 2000 kg.

Row 22. The weight of each conical compartment with the

bases and hinged joints. The weight of half the envelope is 4,386

kg, that of the entire envelope 8,772 kg.

Row 23. Surplus lift force for each compartment and 100% in-

flation (row 15). The combined surplus is 9,751 kg, that for the

entire envelope 19,502 kg.

Row 24. Same, for 75% inflation (row 16). The combined

surplus is 6,211 kg, that for the entire envelope 12,422 kg.

Row 25. The difference in the lift force for each compart-

ment when inflated to 100% and when inflated to 75%, i.e.3 one fourth

the total lift force or one third the partial lift force. We can ob-

tain the total surplus more simply and more reliably by dividing the

combined lift force (row 16) by 4. We thus find 3,532 kg, and 7,064

kg for the entire envelope.

In order to find the net lift force for each compartment, we

have still to subtract the weight of the gondola_ the cable tension-

ing system_ the heating tube_ etc. We shall now deal with these

points.

Row 26. Here we determine the weight of the cable tensioning

system: the total weight and the weight per running meter of the

gondola.
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The load on the cable system is not greater than the maximum

lift force, i.e., 28 tons (row 16). The cross section needed to re-

2
sist this load will not be more than 28 cm , if we assume an ultimate

strength of 60 kg/mm 2 and a factor of safety of 6; if the denisty is

7.8_ one meter of cable will weigh 22 kg. On the average its length

will be not more than 20 meters. This means that the entire cable

system will not weigh more than 440 kg. Doubling this figure to

allow for pulley blocks and miscellaneous parts, we arrive at 880 kg.

This means about 12 kg per meter of the gondola (the length of the

gondola being 72 meters).

Row 27. We now consider the total weight of the heating sys-

tem per meter, assuming the heating tube to run the length of the

gondola. We shall assume a semicircular cross section, diameter 0.5

meter, and a wall thickness of 0.13 mm. The surface area of the tube

will be 57 square meters. It will weigh 57 kg. We double this

figure and round off the result to allow for the temperature regula-

tor and other accessories. We arrive at a figure of 120 kg_ or 1.7

kg per meter.

Row 28. We now find the weight of the gondola hangers. The

load on these members can not be greater than the maximum lift force

(row 14). Therefore the cross-sectional area can not be greater than

28 cm2 (row 26), and the weight per meter can not be greater than 22

kg. Assuming the average height of the gondola to be 4 meters, we

obtain88 kg. But in view of the need for transverse bracing and

various other secondary members, we shall double this figure and

round it off to 180 kg, or 2.5 kg per meter.

Row 29. We now deal with the sheathing of the gondola. The

lateral surface area will be 57 square meters. Assuming steel or

some other metal, one square meter of which weighs I kg, and rounding

off, we obtain a figure of 600 kg for the side walls of the gondola.

This includes the light windows and doors. Thus_ we have about 9 kg

per running meter of gondola.

Row 30. We now find the total and the relative weight of the

gondola floor. We shall take the width of the gondola as 2 meters 3

the average thickness of the floor as 4 cm, and assume the structu-

ral material to be wood with a density of 0.6. Then the weight of

the gondola floor per meter will be 45 kg. The total weight of the

floor will be 3240 kg. How this load and the other loads are dis-
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tributed will be clear from the drawings.

Row31. Weight of suspendedseating_ bunks, etc. Wemay as-
sumea weight of I0 kg per person or a total of 400 kg for all 40.
This amounts to less than 6 kg per running meter of gondola.

Row32. Thus, one running meter of gondola with seats, cable
tensioning system, and heating tube, will weigh 12 + 2 + 9 + 3 + 45 +
+ 6 _ 75 kg. The total weight over a length of 72 meters will be
5,544 kg*.

Row33 gives the weight of the gondola compartments.

Row34. From rows 33 and 23, we find the lift force for each
compartment of the gondola and each section free of the gondola for
100%inflation.

Row35. Same,but for 70%inflation (row 24). The last half-
length compartment of the gondola is supported by a double (6 meters)
envelope compartment, and for that reason the free lift force is
comparatively high.

ment.
Row 36. Same, but per meter instead of for the entire compart-

\

Row 37- Same, but for 75% inflation.

Row 38. If the gondola extended the full length of the en-

velope and the load were distributed according to the lift force for

each compartment, there would be no forces tending to bend the

dirigible, i.e.; there would be no moment of the envelope and no

moment of the lift force. More precisely, they would cancel each
other out.

In this case the envelope would be subjected solely to the

vertical tension due to the weight of the envelope and the pressure

exerted by the gas. In row 38 we have the total gas pressure (differ-

ence) over each cross section. It is theoretically assumed that a

tube open at the bottom (appendix), filled with hydrogen and one

half the height of the envelope (i0 meters) in length, is connected

to the bottom point of the envelope. This tube will double the

average gas pressure. Note, by the way, that the average pressure

per meter will be 24 kg, maximum36 kg, minimum 12 kg. Without the

added pressure (i.e., without the tube), the minimum pressure would be

zero, the average pressure 12 kg; and the maximum 24 kg. In general,
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we have

p= . - 7 ) (b+h),
alr gas

where the difference between the density of the air and the density

of the hydrogen (filling gas) is multiplied by the sum of the length

of the tube and the distance from the low point of the envelope to

the section in question.

Row 39. The relative value of the ordinates of the fully in-

flated envelope.

Row 40. Formula (468) gives us the ratio of the two compo-

nents of this (gas) pressure which place the bases in tension. We

shall neglect the stresses in the side walls.

Rows 41 and 42 present these components, i.e., the tension

on the upper and lower bases.

In the case of large dirigibles, for example, dirigibles de-

signed to carry i00 to 1,000 persons, the gondola will extend the

entire length of the envelope, and the moments of the free lift force

and the force of gravity will balance out. We shall be dealing

principally with the gas pressure. Then, as is evident from the

last two rows of the table, near the middle the tension on the upper

base will be almost 1.3 times greater than that on the lower base.

In giant dirigibles, therefore, the middle portion of the upper base
must be made thicker and broader. The latter will be more economical

since it will increase both the volume and the lift force of the

envelope.

In general, however_ and particularly for the case of small

dirigibles, it will be quite difficult to balance the gondola load

against the free lift force of each compartment. Actually, the

ends of the envelope_ since they carry neither the gondola nor any

other load, create a moment of the lift force acting to compress the

upper base and stretch the lower one. Likewise, the appreciable

weight of the motor creates a moment with the opposite effect on the

bases. The heavy objects sometimes transported on board dirigibles

may also have a harmful effect on the bases. Thus we may have to

deal with envelope and lift force moments that are not balanced with

respect to any of the compartments of the dirigible.
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Suppose, for instance, that at the beginning of its trip the
dirigible is filled with hydrogen, and that the surplus lift force
is one fourth the maximum. This surplus is utilized by someload
placed at the midpoint of the dirigible. Consider the consequences
of this set of circumstances. First, we must determine the separate
lift force momentsfor each compartment, then the total moment, and,
finally, the effect of this momenton the envelope. Row25 gives the
surplus lift force for each compartment.

Row43. Distance of the compartments from the center cross
section of the envelope.

Row44. Multiplying the surplus lift force (row 25) of each
compartmentby the distance (row 43), we find the individual moments
about the center cross section. These are given in row 44. The sum
of the momentsabout the center cross section is 74,182 kg-meter.

Row45. In the samemanner, we can find the momentof the
lift force about the second cross section and about the remaining
cross sections, and the sumof these momentsabout any individual
cross section. But there is an even simpler way of determining this.
Eachmomentabout the second cross section is reduced by the sumof
the remaining lift forces multiplied by its distance from the center
cross section (3 meters).

Row46. In this way we can find the sumof the momentsabout
any cross section. To do this, we first add to each figure in row
25 the sumof all the succeeding figures. Wethus obtain row 46.

Row47. Wenowfind the product of these figures and the dis-
tances (row 43).

Row48. Finally, by subtracting the figures in row 47 from
their counterparts in row 45, we obtain the total momentsabout each
cross section. In the first box, we have two moments: one about the
center cross section, and the other about the cross section nearest
to the center cross section, at a distance of about 3 meters (see:
"Theory of the Aerostat"); the momentformulas are (394), (395), (396).
Then formulas (397) - (399) and (442), (449), and (450).

Rows49-52. What momentsacting on the bases will balance
these lift force momentsat each cross section? Wecan determine the
unknownadditional (equal and opposite) forces on the bases at each
cross section from the equation zy + zy = M, or z = M/2y, where z is
the unknownforce on the base, y is the radius of the cross section
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of the inflated envelope, given in row II; M is the sum of the lift

force moments from row 45 . From these data (rows 49 and 44), we

compute the additional forces acting on the bases (row 50). Com-

paring these figures (row 50) with the forces on the bases due to the

gas pressure (rows 41 and 42), we see that the tension on the lower

base must increase drastically, while the tension on the upper base

will be reduced, since the latter is placed under compression (rows

51 and 52).
This is how matters stand when the load is concentrated at

the center of the dirigible. Then the strength of the upper base

will be wasted, while the lower base will have to be made twice as

thick. This is all disadvantageous. In particular_ it is un-

economical from the standpoint of minimizingweight_ which is a

basic concern in designing flying machines.

We shall now assume that the permissible load of 7,064kg

(row 25) is located at the ends of the envelope. We have 3,532 kg at

each end.

The surplus lift force will tend to raise the ends of the

envelope; the end loads_ on the other hand, will tend to force the

ends down. To what extent the two moments balance each other out

may be seen from the calculations.

Row 53. This gives the distance of the end of the envelope

(or load) from each cross section.

Row 54. In this row, we compute the moment of the half-load

(3,532 kg) about each cross section, i.e., we multiply 3,532 kg by

the distance from the load to the cross section_ making use of row

53.

How 55. We determine the additional force z acting on the

bases from the equation 2zy = M, or z = M/2y. We find the values of

z with the aid of rows 54 and 49.

On comparing the figures thus obtained with the forces (row

50) due to the surplus lift force, we see that the latter is far

from smoothed out by the end loads; the serious imbalance remains.

Clearly_ the gondola loads must be as evenly distributed as

possible_ according to the lift force for each individual compartment.

Nevertheless, the force acting on the upper base (closer to the center

cross section) will be slightly greater than that acting on the lower

base_ which is not only uneconomical_ but also dangerous in large

dirigibles where the safety factor is small. Failure of the upper
base would be more hazardous than failure of the lower one.

Row 56. The result of the combined action of the end loads
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(row 55) and the lift force (row 50) is expressed by a positive

change in the forces acting on the bases of the envelope, as indi-
cated in this row.

Rows 57 and 58. On comparison with the tension due to the

gas pressure (row 51), we see that there is a marked increase in the

tensile force acting on the upper base, whereas the tensile force

acting on the lower base is even more sharply reduced and may actu-

ally become negative at the center and at the ends, i.e., these

parts are placed under compression, which is absolutely inadmissible.

Rows 57 and 58 show this clearly.

We shall now consider the effect on the bases of the weight

of the motor and the insignificant lift force moment of the ends of

the envelope (under which there is no gondola). The large supplies

of fuel required for refilling the middle of the envelope (above the

gondola) with gas must be distributed over the entire gondola in

accordance with the lift forces of the compartments. We shall there-

fore deal with the weight of the motor and the end lift force moments.

For a speed of 78 km/h the engine power will be 198 metric

units or 264 hp. Each motor contributes 132 units and a weight of

132 kg. If the speed of the dirigible is doubled, i.e., increased to

156 k_h, the weight of each motor will increase to 1,050 kg.

Note that doubling the speed cuts the maximum range to one

fourth, but it is advantageous in relation to the heating of the

hydrogen, since it broadens its range and rapidity.

The lift force of the end compartment of the gondola is 629 kg

(row 34). With two or three mechanics accounting for 200 kg, 429 kg

will remain. The additional load will be 1054 - 429 = 625 kg. How

will this load behave and to what extent will it balance the lift

force moment developed by the end of the envelope?

Rows 59 and 60. We calculate the moments (row 60) for a load

of 625 kg at each cross section, using the distance between the load

and that cross section (row 59).

Row 61. The additional positive forces exerted on the bases

are determined by dividing by the diameters of the cross section

(row 49).

Rows 62 and 63. The lift force moment of the end of the en-

velope projecting beyond the gondola can be found, at different cross

sections, by multiplying the moment about the center cross section

x I - x
(cf. row 45, here we find 20,618 kg-meter) by the ratio This

xI

_r
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ratio is given in row 62, and the (approximate) moment in row 63.

Row 64. This row contains the corresponding negative contribu-
tion to the force on the bases.

Row 65. Comparing this with the positive contribution due to

the weight of the motor (row 60)_ we see that they at first almost

balance each other out, but then the negative component due to the

lift force at the ends begins to predominate. This is clearly evi-

dent from row 65.

Rows 66 and 67. Taking as a starting point the tensile force

due to the gas pressure (row 51) and modifying it, we find from row

65 the true forces acting on the upper (row 66) and lower (row 6 7 )

bases.

IV. Design Features of a Metal Dirigible

In this chapter I shall not only describe the drawings but al-

so present additional information on the design of a dirigible built

to carry 40 persons.

43. 0nly half the dirigible is shown in the drawings_ since

thetwo halves are almost identical. The drawing of the propellers_

control surfaces, and various other parts is schematic: only the ap-

proximate dimensions and areas are shown. Only the direction of the

corrugations is represented, since they are too small to be distin-

guishable.

44. Fig. 4 shows a side elevation of the dirigible and plan

views from above and below. The direction of the corrugations is

indicated.

45. Fig. 5 gives some idea of the suspension system. The

pulley blocks are small enough to be represented as points. The

tensioning drum and the gastight housing enclosing it are barely

distinguishable in the diagram.

46. Fig. 6 shows cross sections through the same envelope

at various distances from the center (0.2; 0.4; 0.6). The relative

distance of these sections from the center section is indicated on

the drawings. The tensioning system is shown in the first three

drawings, but not in the remainder.
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46. Fig. 7 shows the shape of the center cross section through

the envelope at various stages of inflation. This shape will depend

upon: the aspect ratio of the envelope, the tensile forces acting on

the corrugations (in the side walls), the relative weight of the en-

velope_ the gas pressure, and other factors. The corrugated envelope

will withstand any conditions without forming irregular folds.

Fig. 4

47. Fig. 8 shows a full-scale cross section through the side

walls or corrugations_ Starting from the top, we have:

*In the author's manuscript; the scale is actually about i : 4_ however.

Ii
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Fig. 5

0.2 0.4 0.6

Lo o.98 o.95 o.9 o.8 0.7

Fig. 6
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Fig. 7

i) the theoretical size of the corrugations (for a steel en-

velope 0.2 mm thick);

2) the smallest possible corrugations (lacks elasticity under

tension; this is permissible if there is no need to let out all the

gas at frequent intervals, so that the envelope collapses);

Fig. 8
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l I

Fig. 9

3) the largest possible corrugations (lacks rigidity result-

ing in the formation of irregular folds and cracks; if the corruga-

tions are too large, shallow second-order corrugations superimposed

on the large ones must be introduced);

4) also my recommended corrugations;

5) mean dimensions of the corrugations, close to the theoretical.

48. The same drawing shows the corrugations of the base to

full scale*. They run longitudinally and are three times as large

as the corrugations in the side panels. But they may also be much

shallower and even have a different slope. The purpose of these

corrugations is to lend a certain rigidity to the base. They al-

ternate with flat surfaces. The corrugations of the side panels

and bases run [approximately] at right angles.

Flat surfaces are left wherever any inelastic element is in

contact with the bases.
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49. Fig. 9 shows the hinged connection between the side panel
and the bases to full scale*. The first drawing shows a plan view of

the hinges and rod from above; the second, third, and fourth drawings

show the same hinges in cross section, and the channels shielding the

hinged joints are also indicated. The large broken semicircle gives

the largest dimensions of the channel. The thickness of the material

of which the connections are made is the same as that of the bases

(0.45 ram). The thickness of the channels is the same as that of the

side panels (0.15 ram). The number of hinge leafs and the thickness

of the rod are such that the transverse resistance of the rod is

equal to the transverse resistance of the corresponding portion of

the side panels. The transverse strength of the hinge leafs, edge

plates, and bases is not merely adequate, but three times that of

the side panels.

50. The strength Pr of the rod per unit length of the side
walls will be:

Pr wr 2 K I= -F'T'

where r is the radius of the rod cross section; K is the ultimate

strength; n is the safety factor; and t is the length of the hinge

(its width is undetermined; the shorter the better).

On the other hand, the strength of unit length of the side

panels P will be
S

ps=8 ' K
n'

*In the author's manuscript; the scale is actually abo_t i : 4, however.
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where 8 is the thickness of the side panels.

Equating these quantities, we find

wr 2 / _8t = _ andr= --

8

Assuming 8 = 0.15 mm and assigning the hinge length _ suc-

cessive values of lO, 20, 30 mm_ etc. j we can compile the following
table.

_LE 4

Length of hinge, mm

Rod thickness_ mm

IlO

11.4

lI2o 3o

1.9612._
I

I
I

4o 5o

I

2.7 P3.1o

6o

3.42

7o

3-68 8oI
19o lOO

3.9014.16 4.38

J J

This means that the longer the hinges or, in other words, the

fewer the hinges required over the total length of the envelope, the
thicker the rod. Some economy (negligible, to be sure) will be

achieved by using very short hinges.

In Fig. 9_ the hinges are 5 cm long, corresponding to a rod
thickness of 3.1 mm (of. Table 4).

One group is fastened to the base, while the other "inter-
mediate" group is fastened to a special edge plate of the same

thickness as the base, which in turn is welded to the side panels.

Fig. 9 also shows the connections for the tensioning system
and for docking the dirigible to permit deflation and overhaul.
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In the case of large dirigibles, the connections can be slipped over

the rods between hinges. I have built many models based on this

principle.

The channels to prevent gas leakage may also be located in-

side the envelope. An outside cover to keep out rain and moisture

will then be required. This cover should also be leakproof, i.e.,

we can use double channels, inside and out. They could be made of
some flexible fabric.

J
J

/

Fig. i0

The openings of the hinge leafs must be made larger than the

rod, to provide at least a measure of rolling friction.

51. Fig. I0 depicts a flat dirigible with hooks and rings

for the suspension of the envelope itself and for the attachment of

the cables of the tensioning system and the gondola. The details of
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the tensioning system have been deliberately exaggerated, otherwise

they would not be visible at all in a drawing to this scale. Blocks

and pulleys, cables, the tensioning drum in its gastight housing,

motor, propeller, and heating tube are also shown to a larger scale.

Not all the cable connections are indicated, only a few

typical ones and their positions. On top they may be paired to con-

form with the base.

They are used to suspend the envelope during deflation and

also when the dirigible is being inflated after fabrication on a

horizontal platform in the flat configuration. The lower base must

also have connections, and all must be integral with the interior

tension members. The latter may be welded directly to the base

(without rings), since they do not experience bending or changes in

inclination at the point of attachment.

I

i

Fig. Ii

The vertical hangers supporting the gondola should have loose

connections at top and bottom, so that the gondola is capable of

small displacements. But these may be dispensed without any great

risk (or cables may be used instead). The lower connections are
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Z

attached to the bottom framing of the gondola (Fig. lO). Cables are

lowered from then when the dirigible lands or is moored to its mooring

mast. Mooring can also be accomplished with the aid of cables at-

tached to the bases_ since the latter are very strong in tension.

52. The blocks of the tensioning system (Fig. Ii) must be

made of the lightest and strongest material, e.g., of choice timber

in a metal casing. The number of pulley wheels in each yoke will be

not less than 5 and not more than 10. In the first case, the average

tension on a single cable will not exceed 350 kg. In fact, the

average tension on all the cables will not exceed the total lift

force of the dirigible_ i.e., 28 tons (cf. table above). In our case

the number of pulley systems will be 8 with lO wheels in each. Thus

there will be 80 cables. The tension on each will be 350 kg. With

l0 wheels on one axis (in a pulley system of 20 wheels) 3 the tension

will be 175 kg.

We shall assume this number of wheels in our pulley system.

The steel wire supporting this load will need a cross-sectional area

P
f _ _o

Assuming K/n = 10 kg/mm 2 for steel and a load of 175 kg, we

2
find f = 17.5 mm . The wire will be 4.72 mm thick_ and one meter

of the wire will weigh 0.14 kg. A very heavy and large pulley wheel

would be required to bend this wire elastically. Clearly, the wire

must consist of a large number of fine strands, i.e._ it must be a

cable. Formula (272) gave us

where _ is the elastic strength of the material; E is the modulus of

elasticity; h is the thickness of the wire; y is the radius of the

lili
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wheel (or bending radius of the wire). For the best-quality tempered

steel __o = 0.004 (cf. (307)). This enables us to compile the follow-
E

ing table.

Pulley

diameter_ cm

if

--= 0.004
E

if

--_=o.oo2
E

4

o.o8

0.04

6 8

o._. o.16

o.o6 0.o8

TABLE 5

lO 12 14

0.20 0.24 0.28

o.10 O.L9 o.14

J

16

0.32

o.16

18

0.36

o.18

2O

o.4

0.2

30 40 50

O.6 0.8 1.O

0.3 0.4 O.5

If the diameter of the pulley wheel is l0 cm_ the thickness of

an elementary strand of the cable will be O.1 to 0.2 mm.

As is known; the relative strength of such wires is the greater

the finer the wire. This is the second advantage of using cables (the

first advantage being flexibility and the small size of the pulleys).

Thus, the cable thickness will not be more than 5 to 8 mm. Clearly_

then_ the thickness of the wheel will not be more than 1 cm_ and the

thickness of lO wheels on a single axis will not be more than lO cm.

The projection of each block will be square.

The pulley system must be so constructed that the cable cannot

slip free.

A typical compound block is shown in Fig. ll. In this case the
diameter of the wheels is 16 cm.

In view of the dimensions and the lightness of the material

used; the total weight of each block will not be more than 2 to 3 kg.
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Then the set of eight pulley systems (16 compound blocks) will not
weigh more than 32 or 48 kg.

We found the weight of the tensioning system to be _ kg (cf.

table_ p. /26). We shall assign the same weight to the pulley sys-

tems and their various accessories. It is clear that the diameter of

the pulleys could even be twice as great without creating difficulties.

The combined length of all the cables is found from the draw-

ings to be approximately I010 meters. The weight of one meter of

cable is about 0.14 kg. The total weight of all the cables will there-

fore be 141 kg.

I repeat: the figure 880 kg includes the entire tensioning

system. The pulley blocks account for not more than 50 kg, the cables

for 141 kg. The fixed ties account for not more than 440 kg. This

leaves not less than 249 kg for the tensioning drum, its housing and
motor.

f

Fig. 12

But we have assigned much too large a portion to the fixed

ties (440 kg), assuming that they average 20 meters in length.

Actually, the length of the pulley system should be deducted from



this figure. Wesee clearly from the drawings that 300 kg would be
quite enough, so that there will still be 140 kg left, to makea total
of 389

In Fig. 5, top right_ we see a schematical cross section

through an uninflated envelope. The arrangement of the hinges, ten-

sioning system, protective channels, pulleys_ and connections (for

the tensioning system and for suspending the gondola and the

dirigible itself) is clearly shown.

There is no particular need for a large safety factor for the

members of the tensioning system. Failure of these members would

cause inconvenience_ but would not imperil the safety of those on

board. The gondola hangers are the members that must be made par-

ticularly strong.

53. It is clear from Fig. 5 that the envelope is tensioned at

two points in the gondola 21 meters from the center, i.e._ 42 meters

apart_ 15 meters from the ends of the gondola (the motors)_ and 39

meters from the ends of the envelope.

Fig. 12 indicates the method used in tensioning the envelope.

The tension in one cable may amount to 175 kg, that in all four

cables may reach 700 kg. Clearly, the tensioning equipment must be

built very sturdily.

The tensioning drum toothed wheel and worm drive are mounted

in a common metal frame. The frame is connected by means of braces

to the floor of the gondola and its heavy longitudinal framing. A

lightweight housing covers the machine_ thereby preventing leakage

of gas. The shaft of the worm drive operated by a special motor at

one end is the only part projecting outside this gastight housing.
The mechanism and braces are located on one side or in the

middle of the gondola. At that point_ the gondola floor will have

to be reinforced. It would also prove useful to prestress the

gondola floor to balance the tension on the cables.

It is clear from Fig. 12 that the braces take up about 6

meters of the gondola length. The corresponding lift force (ac-

cording to the table) is I00 to 180 kg per meter or 600 to 1080 kg

over 6 meters. Therefore no increased load is required. But with

five wheels in each block_ an increased load will be necessary,

since the tension will be doubled (7002 kg). Passengers' baggage or

other cargo could be stored here.

The amount of tension on different parts of the envelope will

lessen as the cross section narrows. The tensioning drum should

therefore be stepped_ i.e., it should consist of a sequence of discs

of different diameters. The ratios will be 1.00; 0.95; 0.86; 0.72

(according to the relative diameter of the cross sections of the
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envelope where the tension is applied). The cables may remain cables

over their entire length, provided their ends are fastened to the

tensioning drum and wound around it to correspond with the tension

applied to the envelope at that point. It is not advisable to make

the drum a small one_ since more space is then required to wind the
cables.

It would be desirable to tighten the envelope by 1 to 2 meters.

Given a set of ten wheels in each pulley b_ock, 20 to 40 meters of

cable would have to pass through the pulleys. If the average drum

diameter is 1 meter_ 3 meters of cable would be wound around the

drum in one turn. For 20 to 40 meters this means 7 to 14 turns. The

thickness of the cable will not exceed 1 cm. Consequently_ if the

winding is uniform, the width and height of the groovea in the pulley

wheels need not exceed 3 to 4 cm.

As we see_ the diameter of the drum could be halved. We

would then get 13 to 26 turns. The cross section of the groove would

not be greater than 4-5 cm_ which is not much for a 50-cm wheel. We
shall use this diameter.

This means that each step of the stepped drum measures 5 cm,

or 20 cm in all for a set of four discs. Allowing for the rims or

walls of the grooves and the toothed wheel, the entire drum will not

be longer than30 cm (for a diameter of 50 cm). In Fig. 6 the drum
diameter is assumed to be 1 meter.

Each tooth meshing with the worm drive, assuming a square

section_ must be about 1 cm in cross section_ since it will have to

withstand a load of as much as lO00 kg. Clearly then, the entire

drum together with its frame and braces need not weigh so very much_

if it is made of goodmaterial: the weight will be not more than

about 200 to 300 kg.

The higher the dirigible rises_ the more the cables are paid

out. The purpose of the worm drive is to allow the cables to pay out

independently with the envelope tension, i.e._ without the motor or a

special brake mechanism playing a part. The worm itself will act
as a brake.

There are two such tensioning drums in the dirigible. In

generalj they apply the same tension to the envelope.

The two drums rotate in opposite directions to enable the

dirigible to recover its horizontality when tilted.

But one drum can be left inactive_ while the other is in

operation_ thereby placing only half the envelope under tension s or

relaxing halx_ the envelope_ depending on the extent to which the longi-

tudinal axis of the ship is tilted.

If the envelope is well balanced_ the weather is calm, and the

dirigible is flying at a certain altitude_ the horizontal control
surface alone will serve to stabilize the craft.
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Then there will be no need to apply tension in order to create

normal hydrogen pressure in the envelope: a safe pressure will be

most simply obtained by means of the temperature regulator. If the

pressure is high, the temperature is reduced, the dirigible loses

altitkde_ and the pressure returns to normal. The reverse process is

adopted if the pressure is too low.

As a result, the average work done per hour in applying ten-

sion is modest, but occasionally, when it is necessary to tighten the

envelope, the work rate will be higher. To lose 1 km of altitude,

the envelope will have to be drawn in by 2 meters, i.e., the gondola

will have to be raised by the same amount. However, the gondola to-

gether with all its contents will not weigh more than 20 tons. This
means that the work done will amount to 40 meter-tons. If the di-

rigible descends 1 km in 100 sec, the work done in tightening the en-

velope will be 400 kg-meters per sec, or 4 metric work units. The

rate of descent will be lO meters a second. At a rate of 5 meters a

second_ the work would amount to 2 units.

In ascending the work done would be equal and opposite, were
it not for the friction of the worm drive which absorbs it.

Thus_ 2 to 4 metric work units must be applied to each drum

by the motor. It would be more economical to operate the tensioning

system by using the main engines. These are 15 meters away. Pneu-

matic or electric power transmission would be most economical from

the standpoint of weight. Then the tensioning drum could be supplied

with 100 hp, or even more, directly, and could thus operate at an un-

usually fast rate.

But it would be advisable for the tensioning drum to be

operated independently of the main engines. Gasoline or gas motors,

which start up rapidly, would be needed. But this, of course, will

not mean any savings in weight.

The horizontal trim of the dirigible cannot be maintained by

two methods at once (the horizontal control surface and the tension-

ing system, for example). An attempt must first be made to restore

horizontal trim by means of the tensioning system alone, and if

possible, to do without the horizontal control surface.

Afortiori, it will not be possible to make use of three or

more stabilization methods simultaneously, for example, by adding to

the first two methods uneven heating of the hydrogen inside the en-

velope by means of the temperature regulator.

But the last method may be used alone to stabilize the longi-

tudinal axis of the dirigible.

54 . Fig. 13 depicts a plamview of the floor of the two

halves of the gondola almost from the middle to the ends_ i.e._ over

a length of 34 meters (top two diagrams).
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The bottom diagrams are cross sections through the gondola
and its floor.

v

Fig. 13

It is clear from the layout that each square meter of the

floor will have four hangers at the corners_ by which it will be

suspended (only at the ends of the gondola are the hangers spaced

more closely). These constitute an extension of the ties forming

the tensioning system (cf. the third drawing) and are supported at

the top of the envelope where the gas pressures may be up to 5 tons.

The hangers are marked with circles in the drawing. There will be

219 of them distributed over the gondola. They will present no

obstacle to the movements of the passengers and crew_ since there



will be one meter clearance in between except at the ends of the
gondola.

Not only the floor, but also the bunks, tables_ cabinets_
seats, and access ladders or stairways will be supported by these
members. This will reduce their weight. They may even be madeof
light fabric or mesh. The double bunks are spaced one meter apart;
the lower one is half a meter above the floor_ the upper one 2

meters. 0nly the lower berths are shown in the first two drawings.

The upper berths are not indicated_ but they occupy the empty spaces

in the drawing at a height of 2 meters. Thus they will not hinder

the free passage of those on board either. Passengers and crew will

have to twist and turn a little_ but their movements will not be

seriously impeded. Only at the ends of the gondola is the free

space reduced to half a meter.

The bunks are designed for sleeping_ but the lower ones will

serve as seats during the day. There will be a total of 40 bunks_

corresponding to the number of people on board. The 20 lower berths

will provide enough seating space for the passengers and crew. A

seat needs to be 50 cm square_ so that a single bunk (2 meters long

and one meter wide) will accommodate 6 people_ and still leave some

room.

The best procedure would be to make the lower bunks so that

in the daytime they could be converted into two suspended armchairs.

People could then sit sideways and stretch their legs along the

length of the gondola_ then they would not get in the way. This is

clear from the third drawing_ where the bunks are shown.

The fourth drawing shows a cross section through the floor of

the gondola to a scale of 1 :lO.

Initially_ my plan is to make the floor of separate pieces of

the strongest lumber available. The boards would be arranged with

the grain running across the gondola. They would have to be glued

and screwed together and faced with a thin layer of metal or coated

with a waterproof metal paint to prevent leaks and reduce the fire

hazard. The variable thickness (clearly indicated in the drawing) is

intended to save weight.

Longitudinal members would run along the edges and through the

center of the floor_ to provide greater strength. The center beam

would be very heavy (and also provisionally of wood). It would also

serve as a support for the cables (guide ropes) used in handling the

dirigible and in .mooring the craft to the tower or mast.

In order not to make the floor too heavy and at the same time

as a safety precaution, the underside would have to be reinforced

with a layer of tough steel wire mesh. This mesh would form a sort

of s_fety net if the floor were damaged.

Naturally, in due course the floor would be made of metal, but
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for the time being a compromise is in order.

Cables attached to one or both bases (Fig. 1 and Fig. ll)

could also be used for mooring.

But a more convenient method would be to couple the gondola to

the mast directly_ since this would mean that the mast need not be so

high; the task of maintaining the horizontal trim can be assigned to

the tensioning system. The embarkation of passengers will also be

easier. The stopping of the motors when the ship is moored to the

mast must be accompanied by the simultaneous disembarkation of the

passengers_ and, in general_ by an equalization of the lift force.

Fig. 14

55. Fig. 14 shows the positions of the motor, temperature

regulator, and heating tube. We also see the windows and doors and

gondola connections (to an exaggerated scale).

56. Details of the design of the temperature regulator are

given in Fig. 15. The motor is schematically represented. The upper

drawing gives a longitudinal section, and the lower drawing a plan

view.



449

The outlets for the cylinder gases must be surrounded by a

special gasproof housing, through which the gases are brought to the

temperature regulator, consisting of a square duct. A rectangular

baffle is free to rotate in the duct; this either seals off the duct_

preventing the further upward passage of hot gases (when the baffle

plate is raised)_ or flaps against the large opening in the duct,

permitting the gases to flow freely into the dirigible heating tube

(vertical position of the plate). In the first case, all the hot

gases will be ejected, and the hydrogen in the dirigible envelope

will receive almost no heat. In the second case, on the other hand,

all the gas will be deflected into the heating tube, and almost all

its heat will be transmitted to the dirigible. In the intermediate

case, part of the combustion products will be ejected, while the re-

mainder will be allowed to enter the heating tube. It is clear that

the degree to which the hydrogen is heated will depend on the in-

clination of the baffle plate.

This plate is rotated by a special handle coupled to a gradu-

ated dial. The dial indicates the angle of inclination of the plate

or the average temperature obtained as a result of heating the

dirigible.

To improve the distribution of the heat of the exhaust gases

in the dirigible and minimize losses, the temperature regulator and

the heating tube must be brightly polished, inside and out. But the

interior will soon be dulled, so that for the most part we shall be

concerned with the shine on the outer surface, which may even be

covered with a very thin sheathing material shiny on both sides.

The base of the dirigible must also be shiny on the outside_ and

only the part covered by the heating tube should be black; in fact,

the lower base itself should also be black on the inside. But the

envelope of the dirigible could profitably be made shiny both inside

and out.

Naturally, the parts of the bases lying closest to the tempera-

ture regulator will be subject to the most intense heating. They

should be made thicker (over a short length), or, to achieve greater

economy_ they might be covered by a layer of some substance which will

not be corroded by the combustion products.

57- The gondola has two motors, two temperature regulators,

and two heating tubes. One heating tube is usually fully utilized 3

i.e., run at the highest temperature by closing the opening in the

side of the duct. The other is used to regulate the temperature, i.e.,

it will sometimes be throttled down, thereby lowering the temperature,

and at other times be opened up, thereby raising the temperature (de-

pending on the requirements).

In other cases, both regulators may have to be adjusted at the
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same time. On cooling_ the combustion products will form water_

among other things. At the lowest point of the heating tube there

will be a sump to collect this water. The weight of the water (when

all the combustion products undergo cooling) will be close to the

weight of the hydrocarbon fuel consumed_ and will be useful for

maintaining the time of the dirigible_ as will the variable tempera-

ture of the envelope gas.

It would be most convenient to open the forward regulator

fully (i.e._ to let all the combustion products flow into the heating
tube). Then all the heat of the forward motor would be available for

heating the dirigible_ and there would be no need to exhaust com-

bustion products in the nose section of the envelope_ where their

ejection might disturb the passengers and foul the dirigible. On the

other hand, combustion products exhausted astern (in the tail section

of the envelope by means of the other temperature regulator) would

be entrained by the slip stream without affecting the gondola and

its passengers.

Our dirigible will be unable to ascend unless at least one

motor is working. Similarly_ if both motors were to stop in flight_

the dirigible would begin to sink slowly. But it is difficult to
conceive of a case where both motors would stall at the same time.

One of them (the one still operating) would prevent the dirigible

from sinking. If both the motors were to stop, the dirigible would

glide down in an inclined position_ like an airplane. Its enormous

surface would do the duty of wings. However_ descent over a wooded

area_ at sea_ or in unfamiliar terrain would be risky.

Ballast might be released in order to stop the descent, but

our dirigible would carry no ballast (cargo which is useless in any

other respect). Moreover, this ballast would have to be carried in

amounts of about a ton to be useful, and it is uneconomical to store

it on board. To jettison gondola equipment and fuel would be even

more senseless.

But many ways could be found to avoid an emergency landing.

For example_ a stand-by auxiliary motor could be started up.

This seems to be the most practical approach_ since it would

simultaneously provide the translational motion also necessary to
insure a safe descent.

While the stand-by motor drives the same propeller_ the main

motor could be repaired. It will occasionally be necessary to use

the heat of the motors and at the same time reduce the work done by

the propellers. This combination of circumstances can be successfully

realized if the pitch of the propeller blades can be varied.

58. The working cylinders must also be covered with a special

housing. A powerful stream of air blown through various openings, is

I
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used to cool the cylinders evenly. The exhaust air_ warmed by the

cylinders_ contains a comparatively small amount of heat_ but may

serve to heat the gondola in cold weather or at high altitudes.

/"_ i i i-"k

su;rrace U

/

Fig. 15 Fig. 16

59. The use of vertical control surfaces (functioning like

fish tails) or horizontal control surfaces (functioning like bird

tails) will be unavoidable_ since they are very effective and sensi-

tive at higher forward speeds_ although it may perhaps be possible

to dispense with the horizontal control surface.

As indicated in my article "Air Resistance" (printed in the

journal "Nauchnoy_obozreniye"[Scientific Review] in 1903), the normal
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pressure on a square control surface is expressed approximately by

the formula P = 0.021 iSv 2, where P is the wind load in kg; i is the

angle of inclination of the wind with respect to the control surface

in degrees, not exceeding I0 to 15°; S is the area of the control

surface, in square meters, and v is the flow velocity or the speed of

the dirigible in meters per second. The density of the medium is

assumed to be 0.0012 times the density of water. Assuming S = 6 x 6 =

= 36 square meters and v = 22 _sec for our dirigible, we find P =
= 366i. This means that when the control surface is inclined at i°

to the direction of flow_ the pressure on the control surface (normal

to the surface) will be 366 kg. When the inclination is i0 °, the
pressure will be greater than 3 tons. This will constitute about

one eighth of the entire maximum lift force acting on the dirigible.

A comparable inclination of the propeller axis could never yield a

vertical component of this magnitude. For instance, according to the

tables published in my article "28th year of the dirigible" (unpub-

lished), we find that at the same speed (22 meters per second) the

pressure on all the propellers of our dirigible is 509 kg. For a

1-degree inclination of the propeller axis_ the perpendicular compo-

nent will be about 9 kg_ whereas at i0° it will be about 90 kg.

This is 40 times less than 3660 kg.

Nor will other methods be able to compete with control sur-

faces in rapidity of response.

The action of a control surface is especially advantageous

not only if the surface is inclined_ but also if it is curved. Such

a control surface is shown in Fig. 16 in plan and elevation. This

type of surface is hardly more complicated or heavier than a flat

surface. It is, of course_ more advantageous to place it aft of the

forward propeller.

The control surface consists of a framework of flexible steel

rods with some lightweight material (or corrugated metal) stretched

between them. In operation the tip of the surface is raised or

lowered by means of special cables. Since it is located close to

the gondola_ such a mechanism can be constructed without much trouble.

A control surface of this type can dispense with hinged joints of any

kind. Its flexibility is the important factor.

Wherever possible the control surfaces should be positioned

aft of the propellers. Then their effectiveness will be enhanced by

the air stream generated by the propellers. Such a control surface

will be particularly useful at the start of the dirigible's trans-

lational flight_ before it reaches a speed high enough to take ad-

vantage of the normal airstream. The propeller_ on the other hand,

immediately develops its greatest efficiency (i.e._ sets air in
motion).
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A forward control surface would be less effective than one

positioned _ft of the propeller_ and only the proximity of the pro-
peller and ease of construction could somewhat offset this disad-

vantage.

f

J
i

|

II

Fig. 17

We could also position the horizontal control surface _ft of

the stern propeller; but this is not as convenient or economical

with regard to weight. By putting it in front it might be possible

to increase the surface area.
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In large dirigibles with a gondola extending the length of

the envelope_ entirely different arrangements would be required.

At the beginning of forward flight_ when the speed is still low and

the horizontal control surface is operating at low efficiency_ non-

uniform tensioning of the envelope would be required to maintain

horizontal stability.

If it proved impossible to do without a horizontal control

surface_ it would be advisable to mount it at the stern_ as indi-
cated in Fig. 17.

60. Fig. 17 gives an idea of the possible design of a

flexible vertical control surface of the same size as the horizontal

control surface. It features two slender rods mounted perpendicular

to the surface at one end. Lightweight cables_ whose function is to

apply tension_ thus bending the flexible surface so that pressure is

exerted on it and the course of the airship corrected_ are attached

to the rods near the ends. In general_ the construction of the two

types of control surface is the same, except that the after system

is somewhat heavier. On the other hand_ this system will work more

efficiently because it is located aft of the propeller. A horizontal

control surface mounted on the other side of the rear propeller is

shown in the same drawing. This will operate at a slightly lower

level of efficiency than the control surface situated abaft the pro-

peller. But the difference will be slight_ and_ moreover_ it can

easily be designed to fit alongside the gondola.

The total maximum weight of all the control surfaces has al-

ready been mentioned (in describing the table). Every effort must

be made to remain within these limits in designing the dirigible.

Of course_ the control surfaces may be made in the ordinary

form_ i.e._ flat with no capability for flexing. For a variety of

reasons flexible control surfaces are not suitable for waterborne

vessels. They are far more practical in the case of airships.

61. Figs. ll, 13_ 14_ and 15 illustrate the general construc-

tion of the side walls of the gondola_ its windows_ doors_ the

mounting of the tensioning drum_ the motor_ and other loads.

We see how the floor of the gondola is supported by vertical

hangers over 3 meters in length. Even a heavy concentrated load

will not cause any distortion of the envelope shape_ except for a

slight compression. The point is that these gondola hangers consti-

tute a direct extension of the members of the tensioning system.

Thus_ the load on the floor is transferred to two or three of the

hangers supporting the gondola. These in turn transmit the load to

two or three of the lower members of the tensioning system. This

same load is transmitted to the lower pulleyj then to the upper
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pulley, and finally distributed over a considerable length of the en-

velope (8 meters). The corresponding lift force is not less than 800

kg. The gas pressure on this portion of the envelope will be much

greater, however (about 5 tons). Thus, the compression of the en-

velope _ill be almost imperceptible.

The motors are mounted in the same manner (at the ends of the

gondola). They are suspended, as it were, from the upper parts of

the envelope. The braces between the frame and the floor do no more

than prevent the motor from swaying from side to side.

Coarse wire netting lines the sides of the gondola to a level

of one meter from the floor. It serves to prevent the passengers

from falling out, should the gondola wall panels fail for any reason.

Above this netting is a line of windows, each of which is one square

meter in area. Still higher lies the roof, to keep out the wind

and eliminate excessive drag. Doors, also protected by netting and

covered with windproof material, are inserted between the windows.

62. Fig. 18 also shows two safety valves in the top of the

envelope. One is closed, the other is open allowing gas to escape

in the direction of the arrows. The drawing is schematic. The valve

is reminiscent of a stove damper and is located at the surface of the

dirigible, at the end of the upper base. Only the rod controlling

the movement of the damper projects outside. Its action is facili-

tated by rollers. The edges of the damper enter an annular groove

filled with a seal of nonfreezing liquid (high-grade rubber could be

used instead). The effect of the weight of the valve and the action

of a spiral spring (around the central rod)_ not shown in the draw-

ing, keep the valve closed. The use of a weight instead of a spring

would be effective, but uneconomical. Actually, for safety's sake

the valve is positioned near the stern of the dirigible, at a point

where the gas pressure is about 24 kg/m 2. If the complete set of

valves presents a total surface area of one square meter_ then a

load of far more than 24 kg, say 50 kg, will be required. This amount

of dead weight is uneconomical. Springs would provide great savings.

How the valve operates is perfectly clear. When the over-

pressure inside the dirigible is much higher than the preset valve

and there is danger of the envelope bursting, it will overcome the

weight of the valve and the resistance of the springs and raise the

valve, thereby permitting gas to escape. But the dirigible should

never come to this pass in the first place. In response to the

slightest increase in pressure above normal the dirigible should be

made to lose height by means of the temperature regulator, or the

pressure should be reduced by means of the tensioning system. The

same procedure is used_ moreover, whenever the overpressure falls

below the proper range, i.e., the overpressure can be restored imme-

diately by the same methods.
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63. The fuel_ weighing several tons_ must not be concentrated

at a single point_ since this would impose serious stresses on the

bases. It must be distributed over the entire length of the gondola

in a single long tank slung underneath the gondola and divided up by

partitions.

Valve

Fig. 18

This fuel tank might even repiace the heavy beamunder the

gondola floor and would prove highly economical in that respect.

The gondola is 72 meters in length. If the fuel supply is

assumed to be 5000 liters_ the cross-sectional area of the fuel tank

will be less than 7 square decimeters, and the diameter of the cross

section less than 30 cm. Because of the low gondola bending stresses,

elastic flexure of the tank will be completely assured, even if there

are no transverse corrugations (so-called flexible tubes). Moreover_

the tank could also have an oval or rectangular cross section.

Longitudinal corrugations would provide enormous rigidity for

both the fue$ tank and the gondola_ together with considerable

savings in weight.

The weight of the tank_ if 1-mm steel plate of density 8 is

used_ will be 7 kg per meter. The weight of the light fuel will be

about 50 kg per meter.

Thus, the weight of the tank will comprise about 1/7 of the

fuel weight. This is not much_ if we remember that the tank replaces

a beam weighing not less than 5 kg per meter.

64. The power developed by the motor cannot be transmitted

directly to the propeller because of the large diameter of the latter.

ifii
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This is an inconvenience. A chain drive or gear system will be re-

quired. The propeller circle is actually about 18 meters.

The dirigible travels at a speed of roughly 30 meters a second.

This means that the tip speed of the propeller will be approximately

45 meters a second. Thus the propeller has to make only 2.5 revolu-

tions a second. But it is important that the engine turns at from

50 to 100 revolutions a second. This means that a gear system with

a transmission ratio of from 1 : 20 to 1 : 40 will be required. No

such gearing would be needed if old diesel engines were used, but

this would involve heavy weight penalties.

Modifications and Simplifications

65. In my proposals I have taken the liberty of making

various simplifying assumptions. Thus, both halves of the envelope

have been assumed identical, i.e., the nose and the tail are identical

in size and shape. This means that the envelope will be symmetrical
about the center section.

No such symmetry will be possible for larger and more sophisti-

cated dirigibles: the front of the envelope will be blunter than

the stern. The drag will not be greatly reduced thereby, but the

stability and ease of maneuverability will be much enhanced.

66. Moreover, the lower base, or the bottom strip of the flat

envelope, must be made more convex; otherwise the top part of the

envelope will be more convex than the bottom when the envelope is

inflated and stretched. This depends on the two long shoulders (on

either side of the furrow running the length of the top of the en-

velope). But we shall neglect this for the time being.

This irregularity (asymmetry) will cause the nose of the

dirigible to drop, which will offset the action of the propeller_ the

effect of which is to raise the nose. Thus, the asymmetry may prove

quite useful. To what degree it will be useful can only be de-

termined by experiment. But we can always achieve correct horizontal-

ity by tightening the envelope.

67. Let us take a fairly blunt-nosed dirigible as an example:

its aspect ratio is 4 in the flat form, and about 6 in the inflated



form. Our object is to enhance the horizontal stability and simplify
the tensioning system.

68. The end of the dirigible cannot be designed in accord-
ance with the formula: it must be conical to at least O.1 of the
semiaxis from the end*. The table gives the derivative for a flat
envelope, or the tangent of the angle formed by the curve with the
horizontal. Clearly, from Fig. 3_ the ordinate of the end must be
(cf. rows 6 and 8 of the table) 4.317 - (0.515"6) = 1.23 meter.

From the ordinate corresponding to the abscissa (0.9 Xl), we

subtract the product of the segment 0.I x4 or 6 meters and the tangent

of the angle. This meansthat the terminal rectangle will be 2.46
meters high. If the ends of the envelope are extended by a fraction,
they will become2 meters high, i.e.j equal in height and breadth
or square. But there is no need to do this.

69. In the more sophisticated large dirigibles the gondola
will extend the entire length of the envelope. The upper base of
the envelope will also be fully accessible. The propellers and motors_
however; will be differently arranged. In large dirigibles the number
of both motors and propellers will be increased.

ij:ll
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V. SEQUENCE OF PRACTICAL OPERATIONS IN THE

CONSTRb_TION OF A METAL DIRIGIBLE

I assume the sequence of operations in the construction of a

metal airship to be as follows.

1. The construction of scale models of a dirigible which

do not fly and cannot vary their shape or volume. The dimensions

are 5 to 30 cm in height and 30 to 180 cm in length. Apart from

the corrugations and the other comparatively fine details, the

scale is constant, and the design similar (the last of several such

models so constructed [a dirigible with a volume of 3,000 cubic

meters] is shown in the photograph in Fig. 19 [see also the 8,000

cubic meter models, Figures 20 and 21].

Fig. 19.

2. The construction of partially elastic nonflying models,

i.e., models capable of varying their volume and shape slightly

without being deformed. The dimensions are 30 to 100 cm in height

and 180 to 600 cm in length. The scale is variable. Exact similarity

/
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is not observed (caricature). The envelope alone is built. One of

these models (in brass) [1924] was only 30 cm in height and almost

completely elastic.

Fig. 20.

3. Models of nonflying envelopes which are capable of

varying their volume and folding flat without suffering any deformation.

Such envelopes my be completely deflated and then reinflated an in-

finite number of times with no deterioration. The proportionality

or similarity to a real envelope is more faithfully observed. The

dimensions are 1 to 4 meters in height and 4 to 16 meters in length.

Fig. 22 is a picture of a brass model (in the flat form) one

meter high and 4 meters long, fabricated by the author in 1925;

the picture is taken in the author's garret. The side wall is O.1 m

thick. A second elastic bronze model measuring 10.2 by 0.3 meters in

the flat form with side walls 0.15 mm thick was constructed in 1926

on the basis of my drawings. It was assembled for the first time

without raising the envelope, by a method which is a simplified

version of that described below (cf. section 6 and Figures 31 and

32).

In 1931, the first electric-welded elastic envelope, one

meter high and 6 meters in length, was built. Its side walls and
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Fig. 21

[sign reads: Model of Tensioning System]

Fig. 22.
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Fig. 23.

o

Fig. 24.
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half-tubes were made of carbon steel 0.I mm thick, while the re-
maining parts were _ade of stainless steel 0.2 mm thick (Fig. 23).

The lack of mobile welding machines forced us for the time being to

resort to reversing the envelope during assembly, something which

could not be done in assembling an airship envelope.

Fig. 25.

The first all-welded stainless steel envelope was built in

1933; it measured 11.3 meters in length, but in other respects had

the same dimensions and order of assembly as the 1926 model.

A general view of this envelope is shown in Figures 24 and 25.

We see the envelope in two stages of inflation, I0 and at 200 mm Hg

respectively.

4. All the components are full size, including: the corrugated

surface of the envelope side walls, the hinged joints, the pulleys,
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Fig. 26.

Fig. 27.
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cables, gondola components, control surfaces, temperature regulators,

tensioning drums, safety valves, etc.

5. Machinery for the rapid, high-precision, and inexpensive

fabrication of full-size components. Here, among others, I have in

mind welding, corrugating, pressing, and rolling machines of different

sizes, function, and design.

Figure 26 shows a compressor used in checking the tightness

of the seams, against a background of an assembled envelope, and

Fig. 27 shows the process of checking the seams of an inflated en-

velope.

Fig. 28.

Figure 28 shows a model of a mobile "two-wheeler" welder

for the electric welding of panels of any size. In the rear we

see an envelope 11.3 meters in length, fabricated solely with the

aid of this model. The subsequent "velocipede" type welding

machine for welding locked envelope seams is shown in Fig. 29.
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Fig. 29.

Fig. 30 shows the arrangement of lever-type strain gauges

for studying the stressed state of the bases (longitudinal strips

or bands) in corresponding various levels of the gas pressure in

the envelope.

6. Docks for the construction of gondolas and metal en-

velopes. A gondola drydock consists of stands of moderate height

from which the gondola is suspended and which the gondola is sus-

pended and which provide scaffolding for its construction. The

dock for the envelope is a more or less flat and horizontal plat-

form, or even a smoothed and cemented dirt surface.

Figure 31 shows the layout of an envelope drydock in plan

form. The thick lines across the envelope indicate the outlines of

individual sections of the side walls.

The bases (longitudinal strips) are assembled on long

tables at each side, and the squares at the ends of the envelope

show where the nose and tail pieces are preassembled.

The dots around the envelope represent short columns for



Fig. 30,

i | J J

o:__o

Fig. 31.
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raising the envelope during inflation and hoisting operations.

v -,

Fig. 32.

z

Figure 32 shows, in cross section, successive stages in

inflating the envelope on a flat, slightly inclined platform,
based on studies of air-filled models immersed in a tank of water.

The dead space in the deflated envelope with collapsed side

walls (top figure) is flushed out with hydrogen, after which the

inflation operation commences. When the amount of gas is almost

sufficient to lift the envelope, the envelope rises automatically

into the vertical position. Then the envelope is filled up and

checked out, after which the gondola is suspended from it.

7. Flying envelopes of simplified design, with no gondola

attached. 2 to 6 meters in height, 8 to 18 meters in length.

Figure 33 shows an all-welded flying envelope 1,080 cubic

meters in volume and 7 meters in diameter, made of steel 0.I mm

thick and measuring 0.36 to 11.44 meters when assembled, under-

going static tests. The building of the envelope was completed

on September 15, 1935, 4 days before K. E. Tsiolkovskiy died.

8. Models of flying dirigibles carrying a gondola plus

a small load in the form of simplified control elements, but no

crew or r_assengers, slightly larger in size than the previous

III
i
!
i
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models.

9. Dirigibles capable of carrying i to 5 people. These are

simplified, very flimsy in construction, impractical, and offer no

significant advantage. They are built solely to gain experience in

construction. They measure 7 to lO meters in height and 28 to 30

meters in length.

Fig. 33.

i0. Dirigibles of less flimsy construction, easily con-

trolled and maneuverable, but even less practical and less economical.

They measure lO to 15 meters in height and 40 to 75 meters in length.

They are capable of carrying 5 to 15 people. The construction is

almost complete, with a few minor simplifications.

II. Practical dirigibles. The larger these are the more

effective and economical they will be. Completely equipped. 15 to

50 meters in height and 90 to 300 meters in length, reaching the

proportions of an ocean liner. Capable of carrying anywhere from

17 to 1,O00 persons.
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The theoretical limits of dirigibles, given the present state

of the art, extend to 300 meters in height and to a passenger and

crew capacity of 200,000 persons.

The air leviathans would be comparable in height with the
Eifel Tower.

The first three steps have been taken already. If this has

not been done in an entirely satisfactory manner, the reason lies

in the inadequacy of the m_terials_ lack of experience, and de-

fects in the equipment. Equipment for welding envelope components

is now being fabricated (the completed models have been scattered

over various sites, in some cases damaged during transportation or

while on display at expositions; in general, it would be advisable

to rebuild them from scratch).

The fourth operation has already been begun and should not be
delayed as the material c0nditions are favorable. This involves

pattern work based on working drawings and tables.

The fifth step is a highly important one, since on it depend

the speed, costs, and quality of construction. It would be desir-

able to complete this stage before beginning the construction of

practical airships (even though such airships could be constructed

without the aid Of specially devised machines).

Using known means of improving dirigible parts, we could use

these data to fabricate the corresponding machinery. Foreign

designers might be of some help here, but the problem is so simple

that, it seems to me, we could get along perfectly well with our
own.

The construction of flat docks and small gondola docks

(sixth step) presents no problems.

The next or seventh step -- the construction of flying models

-- is a rather delicate matter, but is entirely realizable given the

availability of sufficiently thin materials and the appropriate

technical means.

The next steps (eighth through eleventh) could be taken quite

rapidly after the fifth, since everything depends on the machinery

available (i.e., speed and quality). The aerostat components are

neither intricate nor irregular, so that the production of the

proper machine tools would present no great difficulties.

The gradual nature of the steps in question not only frees

us of exorbitant expenses and unproductive effort, but also goes

a long way to simplifying the construction of large practical

dirigibles. This preparation, which costs practically nothing as

far as materials are concerned, frees us of the burden of costly
errors and failure_.

The completion of the first step gives us a general idea

of the shape and layout of metal dirigibles made of corrugated
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metal_ as well as someidea of the relative dimensions of the
dirigible and its constituent parts. This is primarily an artist's
concept of the airship.

The second stage demonstrates the possibility of construct-
ing a metal envelope capable of varying its volume and shape without
detriment to the integrity of the dirigible. The third step illus-
trates the samepossibility_ but more thoroughly. The fourth step
constitutes a preparatory step toward the construction of the
necessary machine tools. It will also provide someidea of the
natural size and strength of the principal parts of the airship.
The gondola and controls will be almost complete in form and built to
full scale.

In the fifth stage, we strive to simplify the parts and the
machine tools required to produce them. This could save quite a bit
of time.

In the seventh step the aim is to construct a simplified
flying model. This stage must be gone through, since it gives us
a clear picture of the relationship between the strength of the
envelope materials, the gas pressure and the gravity loads. It
mayalso give the first practical hint as to the true stability of
the dirigible.

The remaining step serve as preparatory stages for the
accumulation of experience and the avoiding of unnecessary effort,
expense, and loss of life.

A dirigible is an enormousundertaking and its usefulness
is in no way limited to military purposes. It deserves attention
and serious work. This is beyond the powers of a single individual
or a single specialty.

The work of building dirigibles must be distributed among
experienced, knowledgeable, dispassionate, young and vigorous
workers roughly as follows.

I. Materials selection and testing.

2. Rolling of sheet, rods, etc.

3. Punching and stamping of sheet metal.

4. Wires and cables.

5. Electric welding.

6. Oxyacetylene welding.
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7. Flat drydock for constructing dirigible envelope.

8. Hinged joints.

9. Tensioning system with special motor.

lO. Safety valves.

ll. Low dock for gondola.

12. Gondola flooring.

13. Main gondola rods, safety netting, sheathing, windows,

doors, and passengeracco_modation (heating, armchairs, bunks, pro-

visions, etc.).

14. Propeller-motor unit with temperature regulator and

heating tube.

Vertical and, if required, horizontal control surfaces.

General assembly of dirigible envelope.

Supply of hydrogen.

Inflating envelope with gas and coupling envelope to

15.

16.

17.

18.

gondola.

19.

20.

21.

Mooring masts and mooring towers.

Control of dirigible in flight.

My general supervision through the intermediary of

Comrade Rapoport.

All participants in the project should be familiar with the

overall plan.

Model makers must make models of the complete dirigible and its

parts for the visual training of their co-workers.
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4. COMPENDIUM OF THE CORRUGATED STEEL DIRIGIBLE*

Fig. I.

Fig. 2.

"1931. In order to minimize repetition we have reproduced, with new

numbers, only Figures 18-27 from Tsiolkovskiy's previous works.

Cf. editor's notes at end of booK.
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Fig. 3.

Fig. I - Fig. 3. 01d projects. Longitudinal and
transverse sections and view of gondolas from

below.

Fig. 4.

Longitudinal section through a 200-man dirigible.

, 4 i f I

Ii_iII

Fig. 5.

Housing for tensioning drum.

il
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Fig. 6.

Floor of gondola.

Fig. 7.

Transverse section through

multi st ory gondola.
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II. NOTES ON USE OF TABLE

I. Height of inflated envelope, without bases, in meters.

The bases will increase this height, but since the dirigible is

filled to only _4 of its maximum volume, the true height of a

dirigible on the ground will be even less than the figure given. \
The greatest height given in the table is 6 times less than the

height of the Elf el Tower and twice the height of a full-grown

pine tree. Note that the figures in the table represent meters

and kilograms where other units are not specified.

The height of the dirigibles is astounding; but to begin with

we shall construct small ones, proceeding gradually to the larger

sizes; secondly, the construction work is done on a horizontal

surface; this is not only convenient, but the reader will also note

that a dirigible on the ground will not frighten anyone with its

size. When completely inflated with hydrogen the dirigible will

hang suspended. In general, one should remember that all parts of

the dirigible are suspended, i.e., they are in tension and not in

compression, as would be the case with a ship, for example. This

is a tremendous strength-enhancing factor, minimizing the weight

and greatly simplifying construction.

2. The maximum width of a flat envelope under construction

before inflation; it is 1.57 times greater than the first row of

figures. The construction platform must be 30 _ broader, to ac-
commodate the bases.

3. Length of dirigible. The platform is slightly longer.

The length of the largest dirigible is comparable with the length

of an ocean liner, and the height is slightly greater than the

width of such a vessel. The length of the dirigible is six times

its height. Zeppelins of this size are already being built.

4. The width of the envelope bases. This comprises i0

of the envelope height, and ranges from 1 to 5 meters. It is

more advantageous to make the bases wider in the middle than at

the ends. The longitudinal strength increases one and a half times

and the lift force shows a three percent gain. The bases are

assumed rectangular and of uniform width. They are the same length

as the envelope.

5. Surface area of corrugated envelope. This surface area
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is three times that of the center longitudinal section.

6. Surface area of the two bases. This comprises ll.5 %

of the area of the corrugated side walls.

7. Total surface area of gas bag.

8. 3/4 of total volume of gas bag. Inflation to 75 % will

enable the dirigible to rise an altitude of 2 kmand to hover, if

necessary, at that altitude, with no loss of gas in the ascent. The

volume of the largest dirigible listed here is twice that of the

planned giant zeppelin. The average metal dirigible is comparable

in volume to a zeppelin of 50,000 cubic meters.

9. Lift force of dirigible. The air density is assumed to

be 0.00129, gas density 0.00009, i.e., 14 times less. This is for

the case of hydrogen. The lift force per cubic meter is 1.2 kg.

It is, of course, less at high altitudes and at above-zero tem-

peratures, and greater below sea level and in below-zero weather.

It also increases as the atmospheric pressure increasesj The lift

force is equal to the weight of the dirigible and all its contents

exclusive of the gas.

lO. Number of persons carried on board the dirigible. This

ranges from 5 to 610 persons, lO0 kg allows for one person and

baggage. The weight of all the passengers and baggage is assumed

to be one-fifth the lift force, i.e., 20 %. The crew will not

number less than nine; the aerostat, consequently, may carry

only eight passengers in the case of an envelope 15 meters high,

and some profit may be expected. The crew will be relatively less

numerous on large dirigibles, so that these will yield greater

profits.

ll. The surface area of the dirigible per person carried.

This varies from 304 to 63 square meters and expresses the relative

friction or resistance encountered by the envelope in its motion

per passenger or crew member. The surface area of both sides of

the wings of an airplane is not less than 30 square meters, while

the fuselage presents no less than 20 square meters of external

surface. This means that the friction alone on an airplane is close

to the friction on the surface of a dirigible 50 meters high. But

the aeroplane creates an enormous drag due to the struts and other

projecting parts almost completely absent from a dirigible. More-

over, the airplane expends a great deal of energy in keeping itself

aloft, i.e., in counteracting gravity, which is no problem for a

i
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dirigible. On a large dirigible, 63 square meters of metal sheet

enclosing hydrogen will carry a passenger or crewman and the cor-

responding part of the gondola together with all the controls.

These 63 square meters are equivalent to the surface of a cubical

carriage with sides about 3 meters long.

The surface area per passenger or crewman will always en-

close 400 cubic meters of hydrogen. This will do the job of

carrying one man with all his requirements, his baggage, and the

motors, 400 kg of inexpensive metal, and the same 400 cubic meters

of gas will support and carry the man and his baggage indefinitely.

The 400 kg mentioned include the envelope_ the gondola, the controls,

the power plane, and everything else required.

12. The area of the maximum cross section through the en-

velope, ignoring the bases and the depression in the top. The

true area is slightly less. It also expresses the drag opposing

the motion of the dirigible. But the envelope tapers, so that the

true resistance will be at least 25 times lower. This area is

19.4 times less than the surface area of the dirigible, or 5.6 %

of the latter. The area of the principal longitudinal horizontal

section is less than the surface area of the envelope by a factor

of three, if we ignore the bases. This section expresses the re-

sistance to the vertical motion of the envelope.

13. The previous figures reduced 25 times. They express

the drag experienced by the dirigible in its translational motion.

14. The same areas divided by the number of persons carried

on board, i.e., the drag per passenger or crewman. This factor is

very small and decreases as the size of the dirigible increase.

In the case of a large dirigible it will be less than the resis-

tance experienced by a man skating on ice, or in general by a

man moving through still air at the same speed as the dirigible.

But since the speed of a dirigible is considerable, we assume

about 7 hp per passenger to overcome the atmospheric drag. At

first glance it seems strange that the relative drag on a large

dirigible should 0e less than the resistance offered to a human

body. But the latter need not be considered at all when the

passengers are actually on board, for they will be shielded from

the wind by the gondola with its extremely low drag.

15. The total power of all the airship's motors, taking
4/3 hp or lO0 kg/see as the unit. It amounts to 3 thousand metric

units or 4 thousand ordinary units, whereas an airplane carrying

two passengers requires 150 units, and a one-seater airplane re-
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quires 75 units. Our large dirigible will carry about 600 passengers.

This means only 7 hp per passenger, or one-tenth that amount.

The determination of the power is based on a long series of

calculations and experiments on drag. The power is modest_ since

the hull and the gondola of the dirigible are smoothly shaped with

no folds or irregularities. The high and slender gondola serves

excellently as a keel_ while horizontal control surfaces will prove

to be almost superfluous, as we shall see. The resistance offered

by the medium is consequently minimal.

16 and 17". The weight of the motors. We assign a much

larger weight to dirigible motors than to airplane motors, in fact,

almost ten times as much. On the other hand, good performance and

long service life are to be expected from these motors. Moreover,

this can be achieved even if the motors weigh 5 kg each per metric

unit. The figures listed here can then be halved. In practice,

though, following the example of airplanes, we may reduce the

weight of the motors on the largest dirigible to 3 tons.

We assigned lO % of the total lift force to the motors, but

if light-weight motors are used only 5 % or even a figure as low as

1% of the li_ force need be made available for them. These last

motors will, of course, be less reliable than airplane motors.

However, the failure of airplane engines threatens worse consequences

than the failure of dirigible motors, since the former would mean a

crash or a dangerous glide. Engine failure on board a dirigible

would also require a landing; but, firstly, the landing would not

be absolutely inevitable, and, secondly, it is difficult to con-

ceive of a situation where both motors failed simultaneously.

Stalling of one motor would hardly be noticed, so that lightweight

motors would be of far greater value to a dirigible than to an

airplane.

18. The pressure exerted on the dirigible by the air stream;

it is equal to the pressure on all the rotating propellers and com-

prises only 3.3 % of the total lift force; it is therefore 30 times

less than the lift force, or 6 times less than the weight of pas-

sengers and crew, since these account for one fifth of the lift
force.

The pressure acting on the propellers as a result of their

rotation and the pressure exerted by the air stream on the hull

and gondola constitute two equal and opposite parallel forces, i.e.,

a couple. This couple must be balanced or the nose of the dirigible
will rise,
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19. The speed, per second, of the dirigible.

20. The speed of the dirigible in kilometers per hour. This

figure varies from 62 to 106 km. There is a possibility of increas-

ing the engine power of small dirigibles by 8 times. The speed

would then be doubled and be almost twice that of an airplane. This

is also possible in the case of large dirigibles.

21-23. The gas pressure, or, more accurately, the pressure

difference of the gases inside and outside the envelope, per square

meter; the range is 6 to 90 kg. This pressure is given for the

low, middle and high points of the envelope. The pressure is the

same for any horizontal plane cross section or at any height. It

is proportional, in general, to the height of the gas above the

low point of the envelope plus a constant pressure. This constant

pressure depends on us, i.e., on the tensioning forces to which the

envelope is subjected. In our case the low, middle, and high

pressures bear the ratio 1 : 2 : 3 to each other. But if the

tensioning is intense, a different ratio may result, for example

2 : 3 : 4 or ll: 12 : 13. For the largest of the dirigibles

listed in the table, the average pressure will be 60 kg/m 2. The

figures given also express the gas pressure in milimeters of water

column.

24. The total longitudinal gas pressure on the maximum cross

section through the envelope. It constitutes 38.6 % of the lift

force and is therefore quite large. Of course, it falls off rapidly

toward the ends. It must be balanced by the tension in the longi-

tudinal base strips and the corrugated side walls of the dirigible.

The tension in the latter is variable, for it depends on the ex-

tent to which the envelope is inflated with gas and on the force

applying tension to the envelope. Th@refore the longitudinal bases

are likewise subjected to a nonuniform tension. In calculating the

strength of the envelope, the best procedure is to ignore the re-

sistance of the corrugated envelope surface.

25. The longitudinal tension in the corrugated envelope.

On the basis of formula (339) given in my article "Theory of
TT

the Aerostat, we can compute the tension from the data of the

table and text concerning the corrugated surface. Comparing this

tension with the total pressure exerted by the gas on the trans-

verse section, we find that the elasticity of the corrugated sur-

face accounts for at most an insignificant gas pressure in large

airships: viz., 60 _ for a lO-meter envelope, 30 _ for a 20-

meter envelope, and 15 % for a 40-meter envelope, and so forth.
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Accordingly, the resistance of the corrugations may be left out of

the calculations, and attention centered on the bases. However,

by reducing the size and shape of the corrugations, we can increase

their strength; only this reduces the elastic limit; but in our

case the strength is in general_xcessive and may even be halved,
since in practice the envelope is not folded flat. If the size

of the corrugations is halved, the tension in the envelope will

now constitute as much as 120 % of the gas pressure, i.e., it will

greatly enhance the strength of the dirigible, especially near the
ends.

26 and 27. The tension in the bases due to the gas pres-

sure, when the strength of the envelope is neglected. The sum of

both forces must equal the gas pressure. The two forces are in

the ratio of 9 : 7. However, the tension also depends on the ten-

sioning force applied to the envelope; the greater this force the

closer to unity the ratio of the two tensions. The tension at

other points in the bases will be the lower the closer these points

lie to the ends or the smaller the corresponding cross-sectional

area of the envelope. It would seem uneconomical, then, to make

the strength of the bases equal throughout their length. The

strength could be gradually reduced toward the ends, but not too

much, since the gas pressure will increase at the ends in response
to random tilting of the dirigible.

28 to 30. The transverse tension in the envelope per linear

meter varies as a function of the size of the dirigible and the

level of the horizontal section for the same envelope. Tension is

given for the low, middle and high points. The values are in the

ratio of 7 : 8 : 9.

31. Envelope thickness and material of the half-tubes. The

thickness is expressed in millimeters. If the envelope is x meters

high, it will be x hundredths of a millimeter thick. It is made

of either Iron or steel. If made of duralumin, it will be three
times thicker.

32. The thickness of the bases and of hinge material will be

tripled.

33. The longitudinal strength of the envelope decreases

several-fold with size, if the width of the bases also increases,

so that the lift force of the dirigible increases by almost the

same amount, making the dirigible capable of lifting anything it
could lift before.

l
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34. Transverse strength. It is twice as great.

35a. Total depth of envelope corrugations, in centimeters.

Length of corrugations 2.7 times as much.

35b. Length of corrugations, in centimeters.

36. Width of strip from which hinges are formed. This width

is lO times the corrugation depth. The thickness of the hinges is

the same as that of the bases. The strip is made double width and

drilled in this form, after which it is cut in two. The two halves

form a pair that is slipped over the hinge rod. The weight of the

hinges accounts for 2.2 % of the total lift force. Their strength

is appreciable. They account for about 20 % of the strength of the

bases.

37. The width of the strip forming the half-tubes. This

is 8 times the depth of the corrugations. The weight of the half-

tubes is estimated at 0.26 % of the total lift force.

38. The weight of one square meter of the envelope side wall,

with lO % added to take care of weld metal and corrugations. The

thickness of any type of dirigible envelope is more or less pro-

portional to the linear dimensions of the dirigible. Thus we see

that in the case of the largest 300-meter dirigible the corrugated

envelope is made of materlal of the same thickness as roofing

metal. The corrugations and welds add l0 % to the transverse

strength of the envelope.

39. The width of the gondola, or the width of its floor.

In the case of dirigibles 15 meters tall, the gondola will broaden

out upwards in order to match the wider base of the envelope. The

width must be adequate to accommodate the upper berths and sus-

pended seats. There will be enough room for free circulation.

40. Minimum height of gondola; because of the curvature

of the dirigible in the direction of both bow and stern, the

gondola will be taller at the ends, allowing for the possibility

of installing large-diameter propellers at these points. This

will make it possible to increase the efficiency of the propeller-

engine unit.

41. Number of floors in gondola. Only two floors in the

largest gondola.

Great height helps to make space for the overhead bunks



49o

and heating tubes.

42. Propeller diameter.

43 and 44. Length and floor area of gondolas.

45. Floor area per passenger. This will be extremely large

for the smallest dirigible, but will fall to about 2 square meters

for the largest. If overhead bunks are used, this is entirely adequate

to provide each passenger with a spacious berth and plenty of floor

space for chairs, tables, and free passage.

46. Wire thickness, in millimeters, lO wires will run up-

ward and lO downward to the right and left of each pulley; in all

there will be 20wires. The six systems will account for 120

fairly thick wires. The cables may be lighter. Near the bases the

thick wires may branch out into thinner and more numerous wires.

47. Tension in cables, in kilograms. This tension will be

reduced by half when there are 20 pulley blocks in each tensioning

system. The range is from 20 to 2,500 kg. The cables are wound on

drums to provide tensioning by means of an auxiliary motor. In small

dirigibles not much tension will be required; the figure will be

only 160 kg even in the case of a dirigible carrying 39 persons.

However, the design of large dirigibles might involve changes.

48. Depth of longitudinal girders, in centimeters. When

the dirigible envelope is inflated, all the longitudinal members

of the dirigible undergo flexure. Cracking and deformation will

not occur if adequate tube stiffness, longitudinal corrugations,

etc., are provided.

In practice, this depth could be much greater, since appre-

ciable bending will occur only on the one occasion that the

dirigible is filled with hydrogen, when a certain deformation is

permissible. Subsequently, the bending will be quite insignifi-

cant. For the first practicable dirigible the diameter of the

tubes should be lO cm.

49*. Cost of dirigible. The bulk of the dirigible's

*See editor's note at the end of the book.
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n_ss will consist of the simple metal envelope and gondola. This

mass should not exceed 70 % of the lift force (cf. column 9);

1 kg of mass-produced iron should cost hardly a kopeck.

70 % of the lift force, in the case of a dirigible 300 meters

in length, will mean about 220,000 kg or 2,200 rubles. There re-

main the motors and the hydrogen, but these will not be as ex-

pensive as they are now, after production techniques have undergone

enormous improvement. This means that the cost of dirigibles may

fall to one-tenth the figures cited as the state of the art advances.

On the other hand, however, for the first attempts at dirigible

construction the costs will probably be lO times those estimated,

particularly in the case of the small dirigibles, with which we

shall inevitably have to start.

50 and 51". The useful work done by the dirigible annually,

and the cost of that work. Carrying I00 kg over 1,000 km is taken

as the unit of work. Compare the cost (51) of the work done to

the cos_(49) of the dirigible. The reader will readily see that

the latter is negligible for a dirigible i0 meters tall, but be-

comes 2-1/2 times greater than the cost of the dirigible for the

next craft listed. Subsequently, it becomes 4, 5, 6, 7, and 8

times greater.

*See editor's note at the end of the book.
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EDITORS' NOTES ON THE WRITINGS OF

K. E. TSIOLKOVSKIY

CONCERNING DIRIGIBLES

I. THEORY OF THE AEROSTAT

The bulk of this work is contained in an unpublished manu-

script written in 1886 (and preserved in the author's personal

archives). The gradual publication of this manuscript over a period

of years was accompanied by revisions, replanning and re-ordering

of the material, and partial changes in the text. A portion of

the manuscript, bearing the general title "Theory of the Aerostat,"

was included in the book "The Metal Dirigible," published in 1892

(first edition)and 1893 (second edition); another portion was

published in the article "Independent Horizontal Motion of a

Dirigible" in the journal Vestnik opytno_ fiziki i elementarnoy

matematiki [Bulletin of Experimental Physics and Elementary Mathe-

matics], Nos. 258-259 (1898), Odessa, but the largest portion of

the entire manuscript was published in the journal Vozdukhoplavatel'

[Aeronaut] during the years 1905 to 1908, under the heating "The

Aerostat and the Airplane." The chapter in the manuscript relating

to the horizontal motion of a dirigible was re-edited by the author

in 1912 and given the title "Motion of a Dirigible" [Dvizheniye

aeronata]. In this last version it is now reprinted here as

Chapter XIV, "Motion of an Airship." A portion of the article

dealing with the heating of the envelope gas was prepared for the

press as the concluding chapter in the s@ries "The Aerostat and

the Airplane." In the present edition, it is included in the

"Theory of _he Aerostat"section as the concluding chapter (XV) of

this far-ranging work (cf. notes on Chapter XV).

The text of Chapters I to XIII, "Theory of the Aerostat,"

was taken from the book "Selected Works of K. E. Tsiolkovskiy,"
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[Izbrannyye trudy K. E. Tslolkovskogo], prepared for the press in

1932-1934, edited by Ya. A. Rapoport under the direct supervision

of the author (0NTI [Scientific-Technical Press], Gosmashmetlzdat

[State Machinery and Metallurgy Press] 1934). The editors' notes on

Chapters II-XI in that edition have not lost their appropriateness

and are reproduced below in almost complete form.

II. VARIATION IN AEROSTAT VOLL_tE

Section 56. In accordance with the international standard

atmosphere, this gradient is 6.5°C per 1,000meters.

IV. CERTAIN CONDITIONS WHICH MUST BE SATISFIED BY

ANY DIRIGIBLE

Section llSa. Today the bows of airships do not taper to a

point, but are rounded (slightly blunted, thickened) in accordance

with the requirements of aerodynamics. Cf. section 350.

V. BRIEF DESCRIPTION OF A METAL AIRSHIP

Sections 125, 126. Subsequently, as will be clear from the

material that follows, the author arrived at a slightly different

solution of these problems.

Section 135. Subsequently, the author gave up displacing the

gondola longitudinally, and proposed nonuniform tensioning of the

envelope as a means of controlling the static moment. K.E.

[Tsiolkovskiy] also suggested placing the control surfaces in the

propeller wake.
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VI. TKESHAPEOFA DIRIGIBLE

Section 138. This type of internal suspension suggested by
Tsiolkovskiy has now won widespread favor amongdesigners of non-
rigid and semi-rigid dirigibles, but without Tsiolko_skiy's receiving
due credit and acknowledgement.

Sections 144-147. Description of an experimental investiga-
tion of airship cross sections, published earlier in Tsiolkovskiy's
book "The Metal Dirigible," 2nd Ed., Ealuga, 1893.

Section 171. The sameintegration maybe carried out in the
usual manner.

VII. THECORRUGATEDMETALSKIN OFTHEAEROSTATSTRETCHING
ANDBENDINGOFTHESURFACE

Sectlon 277. The sameformula _y be derived by 1_ilizing
the concept of the section modulus

b " 82

6

Section 298. Formulas (299) and (300) are approxin_te.

Sections 301-304. Here the very cautious assumption is made

that the elastic limit K of the material is simultaneously the

e

stability limit of the corrugated en_Telope in bending.
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IX. PRESSURE OF GAS ON CROSS SECTION OF AEROSTAT.

CENTER OF PRESSURE

Section 455. Above, y was used to denote not the radius,

but the ordinate of the cross section.

X. A SURVEY OF THE PRINCIPAL FORCES ACTING ON THE

ENVELOPE OF THE AEROSTAT; THEIR RELATIONSHIPS

Y
m_x

Section 501. Here, in equations (181) and (182), in place of

and mmY-'nwe introduce the expressions Ymax = h + Y3 and Ymln. =

=y .
3

XI. MODIFICATIONS OF THE COMPONENTS OF

A METAL AIRSHIP

Section 541. This problem was solved by the author elsewhere,

in his "A Proposed 40-Man Metal Dirigible," which appeared in print

in 1930.

XIV. MOTION OF AN .AIRS_qP

Here, and occasionally in other works, the author uses the

term "aeronat" or "air boat" for a controllable airship or dirigible.

Our current knowledge of the motion of an airship is rather

broader (it should be noted that the content of the chapter " Motion

of a Dirigible" corresponds to the text of the corresponding chapter

in the 1886 manuscript, '!Theory of the Aerostat," and was corrected

by the author in 1912). However, the theory postulated here is of

great value even now; we need only introduce certain improvements

in line with the data of modern theoretical and experimental aero-

dynamics (for example, in the investigation of flight velocities).
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The first part of Chapter XIV in "The Aerostat and the Airplane"

(in the journal V0zdukhoplavatel ', No. 8, 17 (1908)), entitled

"Air Resistance," was devoted to a study of the airplane wing. Vol. I

of this edition does not contain that article.

The article "Motion of a Dirigible" is printed first, and the

numbering of the equations, as in the case of Chapter XV, begins

with No. 1. The author did not submit this article for publication,

since it required checking.

For the convenience of the reader, the notation for the

variablcs has been brought into agreement with that of the earlier

chapters.

XV. HEATING OF LIGHT GAS AND

AN ADJUSTMENT OF LIFT

As subsequently established by Eng. B. N. Vorob'yev, who w_s

entrusted with the study of the manuscripts of K. E. Tsiolkovskiy,

Konstantin Eduardovich [Tsiolkovskiy] made a note in 1932 on this

manuscript to the effect that it was not to be printed, since he

had not corrected it, even though it was of importance.

The contents of this chapter were first published after the

author's death, in "Compendium of Scientific and Engineering Works

on Dirigible Construction and Aerial Navigation" (No. 6, 1938).

The same compendium includes an article by B. N. Vorob'yev,

"On the Article by K. E. Tsiolkovskiy entitled 'Heating of a Light

Gas,' in which the author offered the following information based
on his own research.

"The article by K. E. Tsiolkovskiy entitled 'Heating of a

Light Gas and the Resulting Change in the Lift Force of an Aerostat,'

was written in 1908 and reviewed by the author shortly before his

death. It appears now for the first time in print. This article

originally constituted Chapter XVI of the first portion of one of

his most outstanding articles, "The Aerostat and the Airplane,"

which appeared in print in the periodical "Vozdukhoplavatel' in

the years 1905 to 1908. In this long article Tsiolkovskiy apparently

had the intention of expounding his basic positions on the design

of both the dirigible (primarily a system he himself devised) and

the airplane. However, he was not successful in getting even the f

first portion of his work, the part devoted to the dirigible, com-

pletely into print in that periodical. By the end of 1908° when

separate articles covering over two thirds of the first portion had

been printed in the journal, the board of directors of the newly
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founded All-Russian Aero-Club signed a contract with the editors of
Vozdukhoplavatel' under the terms of which the periodical was obliged

to print the proceedings of meetings of the Aero-Club, and other

materials of that organization, in return for a certain fee.

K. E. Tsiolkovskiy was duly informed that lack of space prevented

the editors from continuing publication of his article "The

Aerostat and the Airplane."

In the same article, B. N. Vorob_ev writes: "K. E.

Tsiolkovskiy attributed great significance precisely to Chapter XVI

of his work "The Aerostat and the Airplane," referring to it as the

thermal calculations for his dirigible. In this connection he

wrote: "the thermal calculations have been ready in manuscript

form for some time and are being submitted for publication by

Vozdukhoplavatel' as a continuation of my major contribution "The

Aerostat and the Airplane." But the journal became the organ of

the Aero-Club, so that the publication of my articles ceased"

(K. E. Tsiolkovskiy. History of My Dirigible. Publ. by ASSNAT,

P. 13, 1924)."

In connection with the remark by K. E. Tslolkovskiy in his

earlier work "A Simple Study of the Airship and its Construction"

(section 308, No. 2, 1904) to the effect that the "method of

heating the gas in the interior of the aerostat was suggested com-

paratively recently by Partridge," B. N. Vorobryev asserts in this

same article: "Only in 1908 was this important question investigated

thoroughly for the first time -- by none other than K. E. Tsiolkovskiy,

who carried out several such experiments. Neither prior to him,

nor after him, neither in our own nor in the foreign literature, has

there been such a consistent analysis of the interesting and serious

problem of the artificial heating of the gas.

This assertion of B. N. Vorob'yev's must be accepted as

fully justified. Priority in the scientific investigation of the

problem of heating the lifting gas in a dirigible certainly belongs

to K. E. Tsiolkovskiy.

Since the system of numbering the sections was not maintained

in the final chapters_ because of the impossibility of publishing

the entire contents of "The Aerostat and the Airplane," at that

time (1905-].908), we decided to change the section numbers 841-878

in Chapter XV, replacing them by 1-40, respectively, particularly

since sections 858 and 859 turned out to be accidentally duplicated

in the manuscript.

Section I. Here, as well as elsewhere in Chapter XV_ the

author denotes the volume of gas in the envelope by V; but in

Chapter XIV the same volume is denoted by W. We have designated

the volume U in accordance with the usage of Chapters I-VIII.



Section 29. Cf. formula (27) in Chapter XIV.
Onequarter of the total (Archimedean) lift force is

the total weight of all the passengers is

u(_ -7 )k;
a g b

the ratio of these variables is

1 1 Ta 1

4 kb 7 -Tg 4K kI - )
a b _a

Section 36. This holds good for all diatomic gases, e.g.,

hydrogen, nitrogen, etc. The specific heat of helium, a monatomic

gas, is slightly lower.
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2. EL_4ENTARY DESIGN FOR A METAL DIRIGIBLE

This is a 1914 article. In it, Tsiolkovskiy develops (and

to a certain extent repeats) thoughts expounded in earlier writings.

Note on the description of Fig. 14. The author takes a

firm stand "against the use of fixed stabilizers." Modern theory

on the stability of airships in flight demonstrates the expediency

of utilizing such stabilizers independently of the presence of

movable control surfaces.

Figure 16, blank in a 1914 brochure and distorted in the

1934 "Selected Works," has been replaced by another plate.

3. T}[E DESIGN OF A METAL DIRIGIBLE

TO CARRY FORTY PASSENGERS

A 1930 article. The present edition reproduces the entire

text of this 1930 article, but with some rearrangement. The

article was reprinted in its present form in the compendium

"Selected Works of K. E. Tsiolkovskiy," 1934, from which the text

for the present edition was taken.

In Chapter III, "Notes on_the Use of Table," the author's

misprints are corrected: 8844 m_ instead of 8944, and 17, 688

instead of 17,888 (p. 17), 9751 and 19,502 instead of 9857 and

19,714 (p. 23); the author's corrections are introduced:

12 + 2 + 9 + 3 + 45 + 6 = 77, and 5472 becomes 5544 (p. 32).

A misprint in the author's edition is corrected in the

same table: 1746 instead of 1741 (p. 23), and some minor cor-

rections are made: 193 instead of 201 and -- 16 instead of --12

(p. 36); --20 instead of--13 (p. 37).

At the end of Chapter V: "Sequence of Practical Operations"

section 21, which was omitted by the editor in the 1934 edition,

is restored.

4. COMPENDIUM OF THE CORRUGATED STEEL DIRIGIBLE

The 1931 article, with drawings and descriptions reproduced

almost in their entirety; accordingly, only the drawings omitted in

the previous two articles are included in the current edition.
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The table gives a description of a numberof geometrically
similar dirigibles; the envelope thickness varies from one dirigible
to another in proportion to the linear dimensions.

This table is a partial repetition of the contents of
"Table of Corrugated-Iron Dirigibles" published in 1915, and compiled
for dirigibles ranging from lO to 300 meters in diameter and 60 to
1800 meters in length with volumes of up to 58 million cubic meters.

Modernhigh-strength materials render much lighter hulls
possible.

Section 17. In contrast to "aeronat" (air boat or lighter-
than-alr craft), the author uses the term "aeronef" for airplanes
(cf. section 17, "Notes on Use of Table.").

Sections 49-51. Naturally, the author's discussion of
operating costs and the costs of materials is only of historical
interest.

5- Note

In the selection and arrangement of material from the previous-
ly published _orks of K. E. Tsiolkovskiy the editors of this volume
have striven to avoid repetition wherever possible. At the same
time_ the present volume includes all the hitherto unpublished early
investigations and reflections which Tsiolkovskiy felt were important
in connection with dirigibles.

The editors realize that a similar compendium(albeit a
less complete one) w_s prepared and published during the author's
lifetime (ONTI, Gosmashmetizdat,Moscow,1934). All the material
in this compendiumis included in the present edition.

I
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A LIST OF TEE WORES OF K. E. TSIOLKOVSKIY

ON DIRIGIBLES AND THE THEORY OF AERONAUTICS

1886

I. Teoriya aerostata. Teoriya i opyt aerostata, Imeyushchego

v gorizontal'nom napravlenii udlinennuyu formu (Theory

and Practice for an Aerostat With an Elongated Elevation).

Manuscript.

1890

2. 0 vozmozhnosti postroyeniya metallicheskogo aerostata

(On the Possibility of Constructing a Metal Aerostat).

Manuscript.

1892

3. Aerostat metallicheskiy, upravlyayemyy (The Metal

Dirigible).

1st Ed., publ. by Chertkov, Moscow.

1893

4. Aerostat metallicheskiy, upravlyayemyy.

2nd Ed., publ. by the author, Kaluga.

5. Vozmozhen li metallicheskly aerostat (Is the Metal

Aerostat Feasible ).

Nauka i zhizhn' (Science and I/f_), No. 51-52, Moscow.

1896

6. Zheleznyy upravlyayemyyaerostat na 200 chelovek

(A 200-Man Maneuverable Iron Aerostat).

Publ. by the author, Kaluga.



502

1897

7. Samostoyatel'noye gorizontal'noye dvizheniye uprav-
lyayemogoaerostata (Independent Horizontal Motion
of a ManeuverableAerostat).

Vestnik opytnoy fiziki (Herald of

Experimental Physics), No. 258-259, Odessa.

Separate brochure, Moscow,1898.

±898

8. Prostoye izucheniye o vozdushnom korable i yego

postroyenii (A Simple Study of the Airship and Its

Constructi on ).

Publ. by "Obshchedostupnaya tekhnika"

(Popular Engineering), Moscow.

19oo

9. Voprosy vozdukhopla_niya (Problems of Aeronautics).

Publ. by "Nauchnoye obozreniye"

(Science Re_-iew), No. I0,

St. Petersburg. Separate

Publication , 1901.

iO. Uspekhi vozdukhopla_niya v XIX v. (Advances in Aero-

nautics During the 19th Century).

Publ. by "Nauchnoye obozreniye, "

No. 12, St. Petersburg.

Separate publication, 1901.

1904

Ii. Prostoye ucheniye o vozdushnom korable i yego postroyenii.
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2rid Ed., supplemented. Publ. by the author, Kaluga.

19o5

12. Metallicheskiy vozdushnyy korabl' (The Metal Airship).

"Zmaniye i iskusstvo" (Knowledge and the Arts ),

No. 9, St. Petersburg.

19o5 -19o8

13. Aerostat i aeroplan (The Aerostat and the Airplane).

"Vozdukhopla_tel' " (Aeronaut), 1905-1908. Chapter XVI

of this work, which the author write in 1908 and entitled

"Heating of a Light Gas and the Resulting Change in the

Lift Force of an Aerostat_" remained in MS form until

1938 when it was first published in "Nauchno-tekhnicheskiy

sbornik tabor po dirizhablestroyeniyu" (Scientific and

Technical Collection of Works on Dirigible Construction)_

No. 6, 1938, publ. by "Aviatsionnaya gazeta" (Aviation

Gazette).

1910

14. Metallicheskiy meshok, izmenyayushchiy ob'yem i formu

(A Metal Envelope of Variable Volume and Shape).

"Vsemirnoye tekhnicheskoye obozreniye"

(World Technical Review), No. 3,

St. Petersburg.

Separate publication by the author, Kaluga.

15. Metallicheskiy aerostat. Yego vygody i preimushchestva

(The Metal Aerostat. Its Merits and Advantages).

"Vozdukhoplavatel', No. Ii, St. Petersburg.

"Aero," St. Petersburg.



5o4

1911

16. Zashchita aeronata (Protection of the Dirigible).

Publ. by the author, E_luga.

1913

17. Pervaya model' chistometallicheskogo aeronata iz vol-

nistogo zheleza (First Model of an All-Metal Dirigible

Made of Corrugated Iron).

18.

19.

20.

21.

22.

Publ. by the author, K_luga.

1914

Prosteyshiy proyekt metallicheskogo aeronata (A Simple

Plan for a Metal Dirigible).

Publ. by the author, Kaluga.

1915

Tablitsa dirizhabley iz volnistogo zheleza (Table of

Corrugated-Iron Dirigibles).

Publ. by the author, Kaluga.

Dopolnitel'nyye tekhnicheskiye dannyye k postroyeniyu

metallicheskoy obolochki (Additional Technical Data on

the Construction of a Metal Envelope).

Publ. by the author, Ealuga.

0tzyv Ledentsovskogo obshchestva o moyem dirizhable

(The Attitude of the Ledentsovski¥ Society toward My

Dirigible ).

Publ. by the author, Kaluga.

1918

Vozdushnyy transport (Air Transport ).

Publ. by the author, Kaluga.
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23.

s4.

25.

_J

27.

Gondola metallicheskogo dirizhablya i organy yego upravlen-

iy_ (The Gondola of the Metal Dirigible and Its Controls).

Publ. by the author, Kaluga.

1924

Istoriya moyego dirizhably_ (History of My Dirigible).

"Izvestiya assotsiatsii naturalistov" (Bulletin of the

Association of Naturalists ).

Supplement to No. 3, Moscow.

Chetyre sposoba nosit'sya nad sushey i vodoy (Four

Methods of Traveling Over Land and Sea).

"Vozdukhoplavaniye" (Aeronautics), No. 6-7.

1925

Poryadok prakticheskikh rabot pri postroyke metalliches-

kogo dirigibl_a (Sequence of Operations in Building a

Metal Dirigible).

"Vozdukhoplavaniye," No. 4-5.

Dirizhabl' iz volnistoy stali (A Corrugated-Steel

Dirigible).

"Tekhnika i zhizn I'' (Engineering and Life), No. 29.

28. Istoriya moyego dirizhablya.

"Ogonyok, " No. 14.

1928

29. Novoye o moyem dirizhable i posledniye o nem otzyvy (New

Information and Recent Views on My Dirigible).

Publ. by the author, Kaluga.

30. Dirizhabl' iz volnistoy stali.

Publ. by the author, _luga.
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193o

31. Stal'noy dirizhabl' (The Steel Dirigible).

"Aviatsiya i khimiya" (Aviation and Chemistry), No. 4.

32. Proyekt metallicheskogo dirizhablya na 40 chelovek
(A Proposed 40-ManMetal Dirigible).

Publ. by the author, Kaluga.

33. Epokhadirizhablestroyeniya (The Era of Dirigible
Bui id ing ).

MS

1931

34. Dirizhabli (ririgibles).

Pub!. by the author, Kaluga.

35. Atlas dirizhably_ iz volnistoy stali (Atlas of a
Corrugated-Steel Dirigible ).

Publ. by the author, Kaluga.

36. Metallicheskiy dirizhabl' s izmeny_yushchimsyaob'-
yemom(A Variable-Volume Metal Dirigible).

"Nauka i tekhnika," No. 61-62.

37. dirizhabl' (What A Dirigible Should

38.

Kakim doizhen byt'

Be Like).

"Rabocheye izobretatel' stvo"

(Workers' Inventions), No. !.

Dirizhabl' -- osnova vozdushnogo transporta (The Dirigible

as the Basis of Air Transport).

"Rabocheye izobretatel'stvo," No. 5.
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39. Gazy dlya dirizhabley iGases for Dirigibles).

"EabOcheye izobretatel'stvo," No. 17.

40. Gazovyye vozdushnyyel/korabli ill aeronaty (Gas-Filled

Airships or Dirigib3/es).

"Vestnlk inzhenerov i tekhnikov"

(Herald 'of Engineers and Technicians), No. 5.

1932

41, Novyy t.ip dir}_hably_ (A New Type of Dirigible).

"V boy za tekhniku"

(The Militant Engineer).

No. 17-18.

42. Znach_iye velichiny dirlzhablya (The Significance of the

Size pf Dirigibles).

"Vestnik inzhenerov i tekhnikov," No. 3.

43_ Nekotoryye poyasneniya k osobennostyam konstruktsli

tsel'nometallicheskogo dirizhablya (Some Notes on the

Design of an All-Metal Dirigible).

"Vestnik inzhenerov i tekhnikov," No. 4.

44. Moy dirizhabl' i stratoplan (My Dirigible and Stratoplane).

"Izvestiya VTsIK" (Bulletin Of the

All-Union Central Executive Committee), 288.

45. Dirizhabl' i raketa protiv katastrof (The Emergency Use

of Dirigibles and Rockets).

MS

1933

46: Dirizhabl', stratoplan i zvezdolet kak tri stupeni
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velichayshikh dostizheniySSSR (The Dirigible, the Strato-

plane and the Astroplane as Three Stages in the Magnifi-

cent Achievements of the USSR).

"Grazhdanskaya aviatsiya" (Civil

Aviation), No. 9.

47. Programn_ rabot po stal'nomu dirizhablyu (A Program of

Work on the Steel Dirigible).

Tekhnieheskiy byulleten' Dirizhablestroya

(Technical Bulletin of Dirigible Construction),

No. 4.

1934

48. Dostizheniye vysot stratostatom (High-Altitude Flights

by Stratostat ).

"Grazhdanskaya aviatsi/a, " No. 9.

49. Izbrannyye trudy K. E. Tsiolkovskogo (Selected Works of

K. E. Tsiolkovskiy).

Book i. "Tsel'nometallicheskiy dirizhabl' 7,

(The All-Metal Dirigible).

Book 2. "Reaktivnyye dvizheniye"

(Reaction Propulsion)

1935

50. Pobeda geroicheskikh lyudey (The Victory of Heroic People).

"Nauka i zhizn'," No. 8 (i0).

Tsiolkovskiy's last manuscripts published posthumously:

51. Poyezd dirizhabley (A Dirigible Train).

I
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52.

53.

"Na strazhe" (Sentinel), 20 Sep 1936.

Coll. : "K. Tsiolkovskiy," Publ. by

Aeroflot, 1939.

Aviatsiya, vozdukhoplavaniye i raketoplavaniye v XX veke

(Aviation, Aeronatucis and Rocket Flight in the

20th Century).

Same collection, 1939.

Dirizhabli (Dirigibles).

Same collection, 1939.

FARADAY TRANSIATIONS
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